

Getting Started
With the Micromite

Geoff Graham

Version 3 (April 2017)
Copyright 2017 Geoff Graham
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia license (CC BY-NC-SA 3.0)

2

Table of Contents
GETTING STARTED WITH THE MICROMITE 1

MICROMITE VERSIONS 4
SELECTING A CHIP 5
POWER SUPPLY 6
VCAP 6
MICROMITE FIRMWARE 7
PROGRAMMING THE CHIP 7
THE CONSOLE 9
TROUBLE SHOOTING 11

PROGRAMMING FUNDAMENTALS 12

IMMEDIATE MODE 12
BREAK KEY 13
STRUCTURE OF A BASIC PROGRAM 13
LOADING A PROGRAM USING AUTOSAVE OR XMODEM 13
THE EDITOR 14
MMEDIT 16
THE PRINT COMMAND 17
VARIABLES 18
EXPRESSIONS 19
THE IF STATEMENT 19
FOR LOOPS 21
MULTIPLICATION TABLE 22
DO LOOPS 22
CONSOLE INPUT 23
GOTO AND LABELS 24
TESTING FOR PRIME NUMBERS 25
SAVING THE PROGRAM 26

ADVANCED BASIC PROGRAMMING 28

UTILITY COMMANDS 28
ARRAYS 29
INTEGERS 30
STRINGS 30
SCIENTIFIC NOTATION 31
DIM COMMAND 32
CONSTANTS 33
SUBROUTINES 33
LOCAL VARIABLES 34
FUNCTIONS 35
CALCULATE DAYS 36
GOOD PROGRAMMING HABITS 38

MICROMITE INPUT/OUTPUT 40

CONFIGURING A PIN 40
DIGITAL INPUTS 41
SWITCH INPUTS 42

3

DIGITAL OUTPUTS 42
ANALOG INPUT 44
POWER SUPPLY VOLTAGE 45
FREQUENCY AND PERIOD MEASUREMENT 46
INTERRUPTS 46
PWM AND SERVO OUTPUTS 47
SPECIAL DEVICE SUPPORT 48

EMBEDDED FEATURES 49

KEEPING TIME 49
CPU SPEED AND POWER CONSUMPTION 50
SLEEPING 50
AUTORUN 51
WATCHDOG TIMER 51
SAVING DATA 52

COMMUNICATIONS PROTOCOLS 53

ASYNCHRONOUS SERIAL COMMUNICATIONS 53
I2C COMMUNICATIONS 55
SPI COMMUNICATIONS 56
1-WIRE COMMUNICATIONS 56

BASIC GRAPHICS 57

SUITABLE DISPLAY 57
CONNECTING A DISPLAY 58
CONFIGURING THE MICROMITE 58
GRAPHIC COORDINATES 59
DEFINING COLOUR 59
DRAWING ON THE SCREEN 60
EXAMPLES 61
TEXT COMMAND 62
FONTS 63
TOUCH INPUT 64
DRAWING BUTTONS 65
NUMERIC KEY PAD 67
EXAMPLE PROGRAMS 69
MICROMITE PLUS 69

4

he Micromite is a high performance 32-bit microcontroller loaded with a sophisticated
BASIC interpreter called MMBasic. With MMBasic and the Micromite you get the best of
two worlds, a powerful microcontroller which is also easy to use and program.

In this chapter we will cover the hardware aspects of using the Micromite including selecting the
best chip, programming it with the Micromite firmware and connecting to its console so that you
can enter your program. Subsequent chapters will cover BASIC programming, input/output, timing
and more.
This tutorial will go through many aspects of the Micromite and the BASIC programming language
but it cannot cover everything. For example, many commands have additional features that are only
used in special circumstances. So it would be worthwhile downloading the Micromite User Manual
and having it handy as you read through the following pages. That way you can explore the full
detail of a command or feature that might interest you.

The Micromite firmware and manuals can be downloaded from: http://geoffg.net/micromite.html

Micromite Versions
You have a choice of four Micromite versions depending on the number of I/O pins available.

These are:

28-pin and 44-pin Standard Micromite
Except for the number of input/output pins these are
identical. The 28-pin chip has 19 I/O pins while the
44-pin chip has 33 I/O pins. They both run the standard
Micromite firmware which includes the full BASIC
interpreter, support for many devices/sensors and support
for touch sensitive LCD display panels from 2.2" to 2.8".

64-pin and 100-pin Micromite Plus
These have 45 and 77 input/output pins respectively. They
run the Micromite Plus firmware which supports all the
devices/features in the standard Micromite firmware but
they add advanced graphics, support for SD cards, USB,
PS2 keyboard and support for ten different sized LCD
panels from 1.4" to 8" (many with touch sensitivity).
When equipped with a large display panel (4.3" to 8") the Micromite Plus can also act as a complete
stand alone BASIC computer with keyboard – rather like the TRS-80, Apple II and other computers
from the 1980s.

Chapter

1
T

http://geoffg.net/micromite.html

5

Selecting a Chip
This tutorial will assume that you will be using the 28-pin Micromite as this is the cheapest and
easiest version to get started with. Regardless, the majority of what we will cover will also apply to
the 44-pin Micromite as well as the 64 and 100-pin Micromite Plus versions.

You can use a number of different PIC32 microcontrollers for the 28-pin Micromite but the best is
the Microchip PIC32MX170F256B-50I/SP. This is a 28-pin dual in line plastic package which can
be plugged into an IC socket or a solderless breadboard. You can buy it ready programmed with
the Micromite firmware or completely blank, in which case you will have to program it yourself.
The following are some sources in no particular order (all will ship internationally).

Programmed Micromites, Modules and Kits
Micromite.org http://micromite.org
Silicon Chip Online Store http://www.siliconchip.com.au
CircuitGizmos http://circuitgizmos.com
Graeme Rixon (Rictech) http://www.rictech.nz/pages/5/Products
Mick Gulovsen https://www.shop-dontronics.com/Micks-Mites

Unprogrammed (blank) Chips
Microchip http://www.microchipdirect.com
Element14 http://au.element14.com
RS Components http://au.rs-online.com/web

Note that when referring to the bare chip
(without the interpreter loaded) it is described as
a PIC32 microcontroller but after the BASIC
firmware has been programmed into the chip’s
flash memory, it becomes the Micromite.

When using the 28-pin Micromite the best test
setup is a solderless breadboard as shown on the
right. Using one of these you can simply plug
the chip in and use jumper wires to connect it
up. This allows for easy experimentation and
when you have a working circuit you can
transfer it to a more permanent setup such as a
piece of stripboard or a custom designed circuit
board.
Another choice is the Micromite LCD
Backpack which is shown on the right. This
uses the 28-pin Micromite and includes a 5V to
3.3V power supply so the whole thing can be
powered from a USB port.

The good thing about using the Micromite LCD
Backpack is that you can plug in an LCD
display to try out the graphics commands
supported by the Micromite. We will cover
these later in this tutorial.
You can find out more about the Micromite LCD Backpack at
http://geoffg.net/MicromiteBackpack.html.

http://micromite.org
http://www.siliconchip.com.au
http://circuitgizmos.com
http://www.rictech.nz/pages/5/Products
https://www.shop-dontronics.com/Micks-Mites
http://www.microchipdirect.com
http://au.element14.com
http://au.rs-online.com/web
http://geoffg.net/MicromiteBackpack.html.

6

Power Supply
The Micromite requires a DC power supply between 2.3V and 3.6V with 3.3V recommended. The
following diagram shows the basic circuit for the 28-pin Micromite and it illustrates which pins
should be connected to 3.3V (called Vdd) and ground (called Vss).

The PIC32 uses a high performance processing core and it can be susceptible to noise on its power
supply. For this reason you should use a stable supply that you can trust.
A good source is two alkaline batteries. Their maximum is 3.2V which sits well in the allowable
range and they provide a noise free and stable supply. Using batteries means that you have one less
thing to worry about when you are getting the Micromite to run for the first time. Later you can use
other sources of power and it will then be easy to identify if that is causing a problem with the
Micromite.

Vcap
The Micromite requires only one external component and this is the capacitor shown in the above
diagram between the pin marked Vcap and ground. If the capacitor is polarised its negative leg
must be connected to ground. On the 28-pin chip Vcap is pin 20 and on the 44-pin chip it is pin 7.
This capacitor is critical and must be either a 10µF multilayer ceramic capacitor (MLC) or a 47µF
tantalum. Do not leave it out or substitute an electrolytic.
The 47µF tantalum comes in a leaded (thru hole) package so it can be plugged into a solderless
breadboard. The MLC capacitor only comes in an SMD package and one technique is to solder it
high on the shoulder between pins 20 and 19 of the 28-pin chip. This turns the chip into a ready to
go package. You can just plug it into a breadboard and it does not need any additional components
to function as a single chip computer.

Why is this capacitor so important? It is used to stabilise the 1.8V regulator inside every PIC32
chip. This supply is used to power the 32-bit CPU used by the microcontroller and without it the
CPU will be unable to run.
Note that if you built or purchased the 44-pin Micromite module this capacitor will already be in
place on the module.

7

Micromite Firmware
With Vcap in place and power applied you can program the PIC with the Micromite firmware,
thereby turning it into a Micromite. When the PIC32 is manufactured its flash memory is blank so
when you load the Micromite firmware into that memory you are adding a layer of intelligence that
will translate your commands, expressed in a high level language, to the basic bits and bytes
necessary to do something.

In essence this is why the Micromite is so easy to use; this layer of software (the Micromite
firmware) insulates you from the complexities of dealing with the registers and MIPS instruction set
at the bare silicon hardware level. To illustrate the complexities of controlling the PIC32 chip at
this level the Microchip PIC32 manuals, which describe these details, run to over 1,000 pages and
that is a lot to read when you want to do a simple task.
To get the Micromite firmware into the PIC32 you need a programmer and the best one for this job
is the PICkit 3. This is a low cost programmer made by Microchip (manufacturer of the PIC32
chip). A genuine PICkit 3 costs about US$48 From http://microchipdirect.com but you can also
buy clones which work just as well for less than US$20. If you search on eBay for “PICkit 3” you
will get many hits.

If you do not want to buy a programmer you can buy the PIC32 pre programmed from a number of
sources - see the above list of suppliers.

Programming the Chip
To program the chip using the PICkit 3 you need to download the MPLAB X development
environment from Microchip. This is free software and comes in versions that will run on
Windows, the Mac or Linux. When you install it you will be given the opportunity to install just
the programmer component (IPE) and this is recommended as most people will not need the other
components of MPLAP X. IPE stands for Integrated Programming Environment and this is the part
that knows how to program the PIC32 chip using the PICkit3.

The PICkit3 then needs to be connected to the chip being programmed. In the case of the 28-pin
Micromite you should connect it as shown below.

http://microchipdirect.com

8

If you are programming the 44-pin module you should plug the PICkit3 onto the six pin
programming headers on top of the board.
The MPLAB IPE interface is reasonably self explanatory as shown below. This screen shot was
taken just after successfully programming the Micromite firmware into a 28-pin Micromite.
First you need to select the chip that you will be using, then select the programmer that you will be
using (ie, the PICkit 3) and finally click on the “Connect” button. IPE will then try to connect to the
PICkit 3 and check that the chip to be programmed is present.

You then need to load the Micromite firmware file (a file with a .hex extension) into MPLAB IPE
by clicking on the “Browse” button and selecting the file. Finally you can click the “Program”
button to start the programming sequence. IPE will first erase the flash memory in the chip, then
program it with the contents of the .hex file (previously loaded) and finally verify the programming
operation by reading back what was written and comparing it to the original file.

If the IPE reports “Programming Complete” you can be confident that the chip was correctly
programmed. Of course it may not be as easy as that! Three of the more common errors that you
might encounter are:

9

"Target Vdd not detected". The first thing that the PICkit 3 will check is if it can see the chip's
power supply voltage on pin 2 of its connector and if it is not present you will get this error.
"Failed to program device" or "Cannot read device ID". The programmer could tell that you had
connected it to something (because Vdd was present) but it could not communicate with the chip.
This usually means that something was interfering with the MCLR, PGD and/or PGC lines (ie, they
were not connected or other components were loading down the signals).
"Target Device ID does not match expected Device ID". This means that the programmer has
detected a chip but it is different from the one that you specified in the Device drop down list.

The Console
To program the Micromite using MMBasic you use the console. The console is a serial interface
over which you can issue commands to configure the chip, load the BASIC program and run it.
MMBasic also uses the console to display error messages.

A serial interface consists of two signals. One, often referred to as Tx (for transmit) will send a
coded signal to the other device and the second (called Rx) will receive a similar signal. The data is
sent with start and stop bits and uses the ASCII coding for each character sent or received. The
speed of transmission is referred to as a baud rate which is another way of saying bits per second.
The Micromite starts up with its console serial port set to a baud rate of 38400.
The signal level is TTL which means that the signal will swing between zero and 3.3 volts. There
are other signalling methods, notably RS232 which swings the voltage from -12 to +12 volts and
the Micromite can work with this but it is simpler to use the standard TTL interface.

To use the serial console you need a USB to serial converter which will plug into a USB port on
your desktop computer and on the other end connect to the Micromite's serial console. From your
computer's point of view it will look like a serial port (via USB) while the connection to the
Micromite Plus is a standard serial interface with TTL signals levels.

I recommend converters based on the CP2102 chip and they can be found for a few dollars on eBay
(search for "CP2102"). The diagram below shows how such a converter can be connected to the
28-pin Micromite. Note that this diagram shows the Micromite with an independent 3.3V power
supply but you can use the 3.3V output on the converter to power the Micromite if you wish to.

10

The drivers for the CP2102 are in Windows 10 but for others (Windows 7, Mac, Linux) they can be
downloaded from http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx.
When the converter is plugged into your computer, and the correct driver is installed, it will appear
as a serial port (eg, COM29 in Windows). To find the port number on a Windows computer go to
Device Manager and open the Ports (COM & LPT) entry.

You then need to start a terminal emulator on your computer. For Windows I recommend Tera
Term version 4.88 which is free from: http://tera-term.en.lo4d.com. Set the interface speed to
38400 baud, 8 bits, no parity and one stop bit. The following shows how Tera Term should be
configured (note that the port number will vary depending on your computer's setup):

Within your terminal emulator connect to the serial port created by the USB to serial converter and
reset the Micromite (ie, cycle the power). In the terminal emulator's window you should see the
Micromite's startup banner as shown below.

http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx.
http://tera-term.en.lo4d.com.

11

At this point you can enter, edit and run programs from the command prompt using nothing more
than the terminal emulator and a USB cable.
When your program is running successfully on the Micromite you do not necessarily need the
console so you can set the Micromite to automatically run its program on startup (OPTION
AUTORUN). However, unless you managed to get the program perfectly correct the first time
(unlikely) you will find yourself repeatedly reconnecting to make one tweak or another, so many
people just leave the USB to serial converter permanently connected (they do not cost much).

Trouble Shooting
What if it does not work the first time?
The first step is to check your power supply. Is it 3.3V and is it stable and free from electrical
noise? USB power sources often cause trouble so if you have some doubts you can use two fresh
AA batteries in series as a power source for testing.

If the power is OK check your wiring against the circuit on page 7 and in particular check that 3.3V
is on each pin as specified and that each ground pin is correctly connected to ground. Some cheap
solderless breadboards may have some contacts that do not connect properly so watch out for that.
The next item to check is the capacitor connected to pin 20 on the 28-pin chip or pin 7 on the 44-pin
chip. As specified earlier in this tutorial the capacitor must be a tantalum (47µF) or ceramic
(10µF), an electrolytic capacitor will not work.

Has the chip been properly programmed? If you programmed it yourself you should check that the
programmer did report that the programming operation was successful.

Check the current drawn by the chip – a draw of about 26mA means that the chip is working
correctly and running the BASIC interpreter. A current of less than 10mA indicates that MMBasic
is not running and:

 a power or ground connection is faulty.
 the 47µF (or 10µF) capacitor is faulty or not connected.
 The chip was not programmed correctly.

If you have a current draw of about 26mA the fault is most likely with the USB to serial converter
or your terminal emulator. To check these two elements you can disconnect the serial connections
from the Micromite and short the Tx and Rx pins of the converter together. When you type
something into the terminal emulator window on your computer you should then see the characters
echoed on the screen. If not you should diagnose and correct the error in your USB to serial
converter and terminal emulator before proceeding.
If the above test is OK (ie, keystrokes echo on the screen) the only possible remaining fault is in
your connection of the USB to serial converter to the Micromite. Check that the Tx pin on the
converter goes to the Micromite’s Rx pin and that Rx on the converter goes to the Micromite’s Tx
pin as shown in the above diagram.

12

Programming Fundamentals

 he Micromite is programmed using the BASIC programming language. The Micromite
version of BASIC is called MMBasic (short for MicroMite BASIC) which is loosely based
on the Microsoft BASIC interpreter that was popular years ago.

The BASIC language was developed in 1964 by Dartmouth College in the USA as a computer
language for teaching programming to beginners and accordingly it is easy to use and learn. At the
same time, it has proved to be a competent and powerful programming language and as a result it
became very popular in the 70s and 80s. Even today some large commercial data systems are still
written in the BASIC language (primarily Pick Basic).

For the Micromite the greatest advantage of BASIC is its ease of use. Some more modern
languages such as C and C++ can be truly mind bending but with BASIC you can start with a one
line program and get something sensible out of it. MMBasic is also powerful in that you can
control the I/O pins on the Micromite, interface to things like an LCD display or IR remote control,
and communicate with other chips using a range of built-in communications protocols.
The only significant downside to using a BASIC interpreter is that it is not as fast as a fully
compiled language like C or C++. However, on a fast microcontroller such as the PIC32 MMBasic
will execute each command in an average of 50µs or faster. This speed is suitable for most
applications - for example, it is fast enough to respond to a high revving engine and deal with
signals such as ignition triggers. If you need more speed you can always embed compiled C
functions in your BASIC program.

Immediate Mode
On startup the Micromite will issue the command prompt “> “ on the console and wait for some
input. At this time you have a wide range of commands that you can execute. Typically your
commands would set some options (the OPTION command) or perhaps list the program held in
flash memory (LIST) or even edit it (EDIT). Most times the command is just RUN which instructs
MMBasic to run the program already held in flash memory.

Almost any command can be entered at the command prompt and this is often used to test a
command and see how it works. A simple example is the PRINT command (more on this
command later), which you can test by entering the following at the command prompt:

PRINT 2 + 2

and not surprisingly MMBasic will print out the number 4 before returning to the command prompt.

Chapter

2
T

13

Break Key
One very useful feature of MMBasic is the CTRL-C sequence (hold down the CTRL key then press
the C key). This is called the break key or character. When you type this on the console’s input it
will interrupt whatever the Micromite is doing and immediately return control to the command
prompt.
This can get you out of all sorts of difficult situations. For example, if you entered the following at
the command prompt:

DO : LOOP

You would cause MMBasic to enter a continuous loop and appear to be unresponsive. If you try
entering, CTRL-C you will see that entering this keystroke will immediately break out of the loop
and return MMBasic to the prompt.
Remember CTRL-C because it will prove useful at some time in the future.

To restart your program after it has been interrupted you can use the RUN command at the
command prompt.

Structure of a BASIC Program
A BASIC program starts at the first line and continues until it runs off the end of the program or
hits an END command - at which point MMBasic will display the command prompt (>) on the
console's screen and wait for something to be entered.
A program consists of a number of statements or commands, each of which causes the BASIC
interpreter to do something (the words statement and command generally mean the same and are
used interchangeable in this book). Normally each statement is on its own line but you can have
multiple statements in the one line separated by the colon character (:). For example;

A = 24.6 : PRINT A

Each line can start with a line number. Line numbers were mandatory in the early BASIC
interpreters however modern implementations (such as MMBasic) do not need them. You can still
use them if you wish but they have no benefit and generally just clutter up your programs. This is
an example of a program that uses line numbers:

50 A = 24.6
60 PRINT A

A line can also start with a label which can be used as the target for a program jump using the
GOTO command. This will be explained in more detail when we cover the GOTO command but
this is an example (the label name is JmpBack):

JmpBack: A = A + 1
PRINT A
GOTO JmpBack

Loading a Program using AUTOSAVE or XMODEM
If you prepare the program on your desktop computer you can transfer it to the Micromite using
either the AUTOSAVE or XMODEM commands. This requires you to have a terminal emulator
running on your desktop machine and connected to the console of the Micromite. How to do this
was described in the previous chapter.

14

The AUTOSAVE command puts the Micromite into a mode where anything received on the
console will be saved to the program memory. This means that you can simply copy the text and
paste it into the terminal emulator (eg, Tera Term) which will send it to the Micromite. From the
Micromite’s perspective pasting text into the terminal emulator is the same as if a high speed typist
was typing in the program. To terminate the AUTOSAVE command you need to press the Control-
Z keys in the terminal emulator and the Micromite will save the program to flash memory and
return to the command prompt.

You can try this if you have a Micromite in front of you. At the console type AUTOSAVE and
press Enter. You will see nothing on the screen because the Micromite is waiting for the input.
Copy the short program above to your computer's clipboard and paste it into your terminal emulator
(in Tera Term this is done using ALT-V). You should see the program text being echoed back.
Enter CTRL-Z and MMBasic will confirm that it has saved the program. Then it is just a case of
entering RUN at the command prompt.

The XMODEM command is a little more sophisticated, it uses the XModem protocol to transfer the
data including an integrity check. The full command is:

XMODEM RECEIVE

This instructs the Micromite to look for an XModem connection on the console. After running this
command you should then instruct your terminal emulator to send the file using the XModem
protocol. In Tera Term this is done by using the following menu selection:

File->Transfer->XMODEM->Send
When the complete file has been sent the Micromite will save it in program memory and return to
the command prompt.

The Editor
The Micromite has its own built in program editor which can be used to enter programs and correct
them when errors are discovered. The following screen shot shows the editor in action with colour
coded text. Commands are in cyan, comments in yellow, constants in green and so on.

15

The best way to understand the editor is to try it out. At the command prompt enter the command
EDIT and the editor will startup displaying an empty screen with a help line at the bottom of the
screen. You can then just type in your program. For example, try typing in:

PRINT 1/7

Then press the F2 key on your keyboard. This will save the program to memory and run it. This
will display the result of dividing 1 by 7.
To change this program use the command EDIT again and you will be taken back into the editor
with your program displayed ready for editing.
If you have used an editor like Windows Notepad in the past you will find the operation of this
editor familiar. The arrow keys will move your cursor around in the text while the home and end
keys will take you to the beginning or end of the line. Page up and page down will do what their
titles suggest. The delete key will delete the character at the cursor and backspace will delete the
character before the cursor.

About the only unusual key combination is that two home key presses will take you to the start of
the program and two end key presses will take you to the end.

At the bottom of the screen the status line will list the various function keys used by the editor and
their action. In more details these are:

ESC This will cause the editor to abandon all changes and return to the command
prompt with the program memory unchanged. If you have changed the text you
will be asked if you want to discard your changes.

F1: SAVE This will save the program to program memory and return to the command prompt.

F2: RUN This will save the program to program memory and immediately run it.
F3: FIND This will prompt for the text that you want to search for. When you press enter the

cursor will be placed at the start of the first entry found.
SHIFT-F3 After you have used the search function once you can repeatedly search for the

same text by pressing SHIFT-F3.
F4: MARK This is described in detail below.

F5: PASTE This will insert (at the current cursor position) the text that had been previously cut
or copied to the Micromite's clipboard (see below).

If you pressed the mark key (F4) the editor will change to the mark mode. In this mode you can use
the arrow keys to mark a section of text which will be highlighted in reverse video. You can then
delete, cut or copy the marked text to the Micromite's clipboard. In this mode the status line will
change to show the functions of the function keys in the mark mode. These keys are:

ESC Will exit mark mode without changing anything.
F4: CUT Will copy the marked text to the clipboard and remove it from the text.

F5: COPY Will just copy the marked text to the clipboard.
DELETE Will delete the text leaving the clipboard unchanged.

One point to note is that you cannot paste text into the terminal emulator and expect the editor to
accept it. This is because the editor has a lot of work to do for each character received and it cannot
keep up with a high speed transfer like that. If you do want to copy and paste a program into the
terminal emulator you should use the AUTOTEXT command described earlier.

16

MMEdit
Another convenient method of creating and your programs and sending it to the Micromite is to use
MMEdit. This program was written by Jim Hiley from northern Tasmania in Australia. It can be
installed on a Windows or Linux computer and it allows you to edit your program on a PC then,
with a single button click, transfer it to the Micromite for testing.
MMEDIT is easy to use with colour coded text, mouse based cut and paste and many more useful
features such as bookmarks and automatic indenting. Because the program runs on your PC you
can save and load your programs to and from the computer's hard disk.

The following screen shot shows MMEDIT in action. The most important feature is the right hand
button on the tool bar (the icon of a running man). When you click on this button the program will
be immediately transferred to your Micromite using the XModem protocol.
Following the transfer a window will be automatically opened and connected to the Micromite's
console where you can run and test your program. If it has an error or needs tweaking it is very
easy to go back to the editor, make the change and transfer it to the Micromite again.

MMEDIT can be downloaded from Jim's website at: http://www.c-com.com.au/MMedit.htm. It is
free although he would appreciate a small donation.

http://www.c-com.com.au/MMedit.htm.

17

The PRINT Command
There are a number of common commands that you will be using and we will cover them in this
chapter but arguably the most useful is the PRINT command. Its job is simple; to print something
on the console's screen. This is mostly used to tell you how your program is running and can
consist of something simple such as “Pump running” or “Total Flow: 23 litres”.
PRINT is also useful when you are tracing a fault in your program; you can use it to print out the
values of variables, I/O pins and display messages at key stages in the execution of the program.
In its simplest form the command will just print whatever is on its command line. So, for example:

PRINT 54

Will display on the console the number 54 followed by a new line.

The data to be printed can be an expression, which means something to be calculated. We will
cover expressions in more detail later but as an example the following:

> PRINT 3/21
 0.142857
>

would calculate the result of three divided by twenty one and display it. Note that the greater than
symbol (>) is the command prompt produced by MMBasic – you do not type that in.

Other examples of the PRINT command include:
> PRINT "Hello World"
Hello World
> PRINT (999 + 1) / 5
 200
>

You can try these out at the command prompt.

The PRINT command will also work with multiple values at the same time, for example:
> PRINT "The amount is" 345 " and the second amount is" 456
The amount is 345 and the second amount is 456
>

Normally each value is separated by a space character as shown in the previous example but you
can also separate values with a comma (,). The comma will cause a tab to be inserted between the
two values. In MMBasic tabs are eight characters apart.

To illustrate tabbing the following command prints a tabbed list of numbers:
> PRINT 12, 34, 9.4, 1000
 12 34 9.4 1000
>

Note that there is a space printed before the number 12. This space is a place holder for the minus
symbol (-) in case the value is negative. Notice the difference with this example:

> PRINT -12, 34, -9.4, 1000
-12 34 -9.4 1000
>

18

The print statement can be terminated with a semicolon (;). This will prevent the PRINT command
from moving to a new line when it completes printing all the text. For example, these two
commands:

PRINT "This will be";
PRINT " printed on a single line."

Will result in this output:
This will be printed on a single line.

Without the semicolon at the end of the first line this would have been displayed:
This will be
 printed on a single line.

Variables
Before we go much further we need to define what a “variable” is as they are fundamental to the
operation of the BASIC language. A variable is simply a place to store an item of data (ie, its
“value”).
Variables in MMBasic can be one of three types. The most common is floating point and this is
automatically assumed if the type of the variable is not specified. The other two types are integer
and string and we will cover them later. A floating point number is an ordinary number which can
contain a decimal point. For example 3.45 or -99.0 or 100.01 are all floating point numbers.
A variable can be used to store a number and it can then be used in the same manner as the number
itself, in which case it will represent the value of the last number assigned to it.
As a simple example:

A = 3
B = 4
PRINT A + B

will display the number 7. In this case both A and B are variables and MMBasic used their current
values in the PRINT statement. BASIC will automatically create a variable when it first encounters
it so the statement A = 3 both created a floating point variable (the default type) with the name of
A and then it assigned the value of 3 to it.

The name of a variable must start with a letter while the remainder of the name can use letters,
numbers, the underscore or the full stop (or period) characters. The name can be up to 32 characters
long and the case of the letters used is not important. These are some examples:
Total_Count
ForeColour
temp3
count

You can change the value of a variable anywhere in your program by using the assignment
command, ie:

variable = expression

For example:
CTemp = (FTemp – 32) * 0.5556

In this example both CTemp and FTemp are variables and this line converts the value of FTemp (in
degrees Fahrenheit) to degrees Celsius and stores the result in the variable CTemp.

19

Expressions
We have met the term ‘expression’ before in this tutorial and in BASIC it has a specific meaning. It
is a formula which can be resolved by the BASIC interpreter to a single number or value.
MMBasic will evaluate a mathematical expression using the same rules that we all learnt at school.
For example, multiplication and division are performed first followed by addition and subtraction.
These are called the rules of precedence and are fully spelt out in the manual (around page 49).

This means that 2 + 3 * 6 will resolve to 20, so will 5 * 4 and also 10 + 4 * 3 – 2. If you want to
force the interpreter to evaluate parts of the expression first you can surround that part of the
expression with brackets. For example, (10 + 4) * (3 – 2) will resolve to 14 not 20 as would have
been the case if the brackets were not used. Using brackets does not appreciably slow down the
program so you should use them liberally if there is a chance that MMBasic will misinterpret your
expression.

As you would expect, you can use variables in an expression exactly the same as straight numbers.
You can also use functions in expressions. These are special operations provided by MMBasic, for
example to calculate trigonometric values. As an example, the following will print the length of the
hypotenuse of a right angled triangle using the SQR() function which returns the square root of a
number (a and b are variables holding the lengths of the other sides):

PRINT SQR(a * a + b * b)

MMBasic will first evaluate this expression by multiplying a by a, then multiplying b by b, then
adding the results together. This number is then passed to the SQR() function which calculates the
square root of that number and returns it for the PRINT command to display.

Some other mathematical functions provided by MMBasic include:
SIN(r) – the sine of r
COS(r) – the cosine of r
TAN(r) – the tangent of r
ATAN(r) – the arctangent of r

There are many more functions available to you and they are all listed in the User Manual.
Note that in the above functions the value passed to the function (ie, 'r') is the angle in radians. In
MMBasic you can use the function RAD(d) to convert an angle from degrees to radians ('d' is the
angle in degrees).

Another feature of BASIC is that you can nest function calls within each other. For example, given
the angle in degrees (ie, 'd') the sine of that angle can be found with this expression:

PRINT SIN(RAD(d))

In this case MMBasic will first take the value of d and convert it to radians using the RAD()
function. The output of this function then becomes the input to the SIN() function.

The IF statement
Making decisions is at the core of most computer programs and in BASIC that is usually done with
the IF statement. This is written almost like an English sentence:
IF condition THEN action

The condition is usually a comparison such as equals, less than, more than, etc. For example:
IF Temp < 20 THEN HeaterOn

20

Temp would be a variable holding the current temperature and HeaterOn the action to be done.
There is a range of conditions that you can use:

= equals
< less than
> greater than
<= less than or equals
>= greater than or equals
<> not equal.

You can also add an ELSE clause which will be executed if the initial condition tested false. For
example this will execute different actions when the temperature is under 20 or 20 or more:

IF Temp < 20 THEN HeaterOn ELSE CoolingOn

The previous examples all used single line IF statements but you can also have multiline IF
statements. They look like this:

IF condition THEN
 TrueActions
ELSE
 FalseActions
ENDIF

Unlike the single line IF statement you can have many true actions with each on their own line and
similarly many false actions. Generally the single line IF statement is handy if you have a simple
action that needs to be taken while the multiline version is much easier to understand if the actions
are numerous and more complicated.
An example of a multiline IF statement with more than one action is:

IF Temp < 20 THEN
 HeaterOn
 RedLightOn
 BlueLightOff
ELSE
 CoolingOff
 BlueLightOn
 RedLightOff
ENDIF

Note that in the above example each action is indented to show what part of the IF structure it
belongs to. Indenting is not mandatory but it makes a program much easier to understand for
someone who is not familiar with it and therefore indenting is highly recommended. You will find
that this tutorial uses indentations in all examples for this reason.

An expression like Temp < 20 is evaluated by MMBasic as either true or false with true having a
value of one and false zero. You can see this if you entered the following at the console:

PRINT 30 > 20

MMBasic will print 1 meaning that the value is true and similarly the following will print 0.
PRINT 30 < 20

21

The IF statement does not really worry about what the condition actually is, it just evaluates the
condition and if the result is zero it will take that as false and if non zero it will take it as true. This
allows for some handy shortcuts. For example, if SwitchOn is a variable that is true (non zero)
when some switch is turned on the following can be used to make a decision based on that value:

IF SwitchOn THEN …do something…

FOR Loops
Another common function in programming is repeating a set of actions. For instance, you might
want to step through all seven days in the week and perform the same function for each day.
BASIC provides the FOR loop for this type of job and it works like this:

FOR day = 1 TO 7
 Do something based on the value of ‘day’
NEXT

This starts by creating the variable day and assigning the value of 1 to it. The program then will
execute the following statements until it comes to the NEXT statement. This tells the BASIC
interpreter to increment the value of day, go back to the previous FOR statement and re-execute the
following statements a second time. This will continue looping around until the value of day
exceeds 7 and the program will then continue with the statements following the NEXT.
As a simple example, you can print the numbers from one to ten like this:

FOR nbr = 1 TO 10
 PRINT nbr,;
NEXT

The comma at the end of the PRINT statement tells the interpreter to tab to the next tab column
after printing the number while the semicolon will leave the cursor on this line rather than
automatically moving to the next line. As a result the numbers will be printed in neat columns
across the page. Try it on a Micromite, use the EDIT command to enter the short program listed
above then press the F2 key to save and run it.
The FOR loop also has a couple of extra tricks up it sleeve. You can change the amount that the
variable is incremented by using the STEP keyword. So, for example, the following will print just
the odd numbers:

FOR nbr = 1 TO 10 STEP 2
 PRINT nbr,;
NEXT

The value of the step (or increment value) defaults to one if the STEP keyword is not used but you
can set it to whatever number you want.

When MMBasic is incrementing the variable it checks to see if the variable has exceeded the TO
value and, if it has, it will exit from the loop. So, in the above example, the value of nbr will reach
nine and it will be printed but on the next loop nbr will be eleven and at that point execution will
leave the loop. This test is also applied at the start of the loop (ie, if in the beginning the value of
the variable exceeds the TO value the loop will never be executed, not even once).

By setting the STEP value to a negative number you can use the FOR loop to step down from a
high number to low. For example, the following will print the numbers from 1 to 10 in reverse:

FOR nbr = 10 TO 1 STEP -1
 PRINT nbr,;
NEXT

22

Multiplication Table
To further illustrate how loops work and how useful they can be, the following short program will
use the FOR loop to print out the multiplication table that we all learnt at school. The program for
this is not complicated:

FOR nbr1 = 1 to 10
 FOR nbr2 = 1 to 10
 PRINT nbr1 * nbr2,;
 NEXT
 PRINT
NEXT

The output will be similar to the screen grab below, which also shows a listing of the program.

You need to work through the logic of this example line by line to understand what it is doing.
Essentially it consists of one loop inside another. The inner loop, which increments the variable
nbr2, prints one horizontal line of the table. When this loop has finished it will execute the
following PRINT command which has nothing to print - so it will simply output a new line (ie,
terminate the line printed by the inner loop).

The program then executes another iteration of the outer loop by incrementing nbr1 and
re-executing the inner loop again. Finally, when the outer loop is exhausted (when nbr1 exceeds
10) the program will reach the end and terminate.

DO Loops
Another method of looping is the DO…LOOP structure which looks like this:

DO WHILE condition
 statement
 statement
LOOP

23

This will start by testing the condition and if it is true the statements will be executed until the
LOOP command is reached, at which point the condition will be tested again and if it is still true the
loop will execute again. The ‘condition’ is the same as in the IF command (ie, X < Y). For
example, the following will keep printing the word “Hello” on the console for 4 seconds then stop:

Timer = 0
DO WHILE Timer < 4000
 PRINT “Hello”
LOOP

Note that Timer is a function within MMBasic which will return the time in milliseconds since the
timer was reset. A reset is done by assigning zero to Timer (as done above) or when powering up
the Micromite.

A variation on the DO-LOOP structure is the following:
DO
 statement
 statement
LOOP UNTIL condition

In this arrangement the loop is first executed once, the condition is then tested and if the condition
is false, the loop will be repeatedly executed until the condition becomes true. Note that the test in
LOOP UNTIL is the inverse of DO WHILE.
For example, similar to the previous example, the following will also print “Hello” for four
seconds:

Timer = 0
DO
 PRINT “Hello”
LOOP UNTIL Timer >= 4000

Both forms of the DO-LOOP do the same thing, so you can use whatever structure fits with the
logic that you want to implement.

Finally, it is possible to have a DO Loop that has no conditions at all - ie,
DO
 statement
 statement
LOOP

This construct will continue looping forever and you as the programmer will need to provide a way
to explicitly exit the loop (the EXIT DO command will do this).

Console Input
There are times where you would like to use the Micromite as a straight computer with all of its
input coming from the console and its output going to the same place. For that to work you need to
capture keystrokes from the console and this can be done with the INPUT command. In its simplest
form the command is:

INPUT var

This command will print a question mark on the console's screen and wait for a number to be
entered followed by the Enter key. That number will then be assigned to the variable var.

24

For example, the following program extends the expression for finding the hypotenuse of a triangle
by allowing the user to enter the lengths of the other sides from the console.

PRINT “Length of side 1”
INPUT a
PRINT “Length of side 2”
INPUT b
PRINT "Length of the hypotenuse is” SQR(a * a + b * b)

This is a screen capture of a typical session:

GOTO and Labels
One method of controlling the flow of the program is the GOTO command. This essentially tells
MMBasic to jump to another part of the program and start executing from there. The target of the
GOTO is a label and this needs to be explained first.

A label is an identifier that marks part of the program. It must be the first thing on the line and it
must be terminated with the colon (:) character. The name that you use can be up to 32 characters
long and must follow the same rules for a variable's name. For example, in the following program
line LoopBack is a label:

LoopBack: a = a + 1

When you use the GOTO command to jump to that particular part of the program you would use the
command like this:

GOTO LoopBack

To put all this into context the following program will print out all the numbers from 1 to 10:
z = 0
LoopBack: z = z + 1
PRINT z
IF z < 10 THEN GOTO LoopBack

The program starts by setting the variable z to zero then incrementing it to 1 in the next line. The
value of z is printed and then tested to see if it is less than 10. If it is less than 10 the program

25

execution will jump back to the label LoopBack where the process will repeat. Eventually the
value of z will be more than 10 and the program will run off the end and terminate.

Note that a FOR loop can do the same thing (and is simpler) so this example is purely designed to
illustrate what the GOTO command can do.

In the past the GOTO command has developed a bad reputation. This is because using GOTOs it is
possible to create a program that continuously jumps from one point to another (often referred to as
"spaghetti code") and that type of program is almost impossible for another programmer to
understand. With constructs like the multiline IF statements the need for the GOTO statement has
been reduced and it should be used only when there is no other way of changing the program's flow.

Testing for Prime Numbers
The following is a simple program which brings together many of the programming features
previously discussed.

DO
 InpErr:
 PRINT
 PRINT "Enter a number: ";
 INPUT a
 IF a < 2 THEN
 PRINT "Number must be equal or greater than 2"
 GOTO InpErr
 ENDIF

 Divs = 0
 FOR x = 2 TO a/2
 r = a/x
 IF r = FIX(r) THEN Divs = Divs + 1
 NEXT x

 PRINT a " is ";
 IF Divs > 0 THEN PRINT "not ";
 PRINT "a prime number."
LOOP

This will first prompt (on the console) for a number and, when it has been entered, it will test if that
number is a prime number or not and display a suitable message.

It starts with a DO Loop that does not have a condition – so it will continue looping forever. This is
what we want. It means that when the user has entered a number, it will report if it is a prime
number or not and then loop around and ask for another number. The way that the user can exit the
program (if they wanted to) is by typing the break character (normally CTRL-C).

The program then prints a prompt for the user which is terminated with a semicolon character. This
means that the cursor is left at the end of the prompt for the INPUT command which will get the
number and store it in the variable a.
Following this the number is tested. If it is less than 2 an error message will be printed and the
program will jump backwards and ask for the number again.

26

We are now ready to test if the number is a prime number. The program uses a FOR loop to step
through the possible divisors testing if each one can divide evenly into the entered number. Each
time it does the program will increment the variable Divs. Note that the test is done with the
function FIX(r) which simply strips off any digits after the decimal point. So, the condition
r = FIX(r) will be true if r is an integer (ie, has no digits after the decimal point).

Finally, the program will construct the message for the user. The key part is that if the variable
Divs is greater than zero it means that one or more numbers were found that could divide evenly
into the test number. In that case the IF statement inserts the word "not" into the output message.
For example, if the entered number was 21 the user will see this response:

 21 is not a prime number.

This is the result of running the program and some of the output:

You can test this program by using the editor (the EDIT command) to enter it. Using your newly
learnt skills you could then have a shot at making it more efficient. For example, because the
program counts how many times a number can be divided into the test number it takes a lot longer
than it should to detect a non prime number. The program would run much more efficiently if it
jumped out of the FOR loop at the first number that divided evenly.
You could use the GOTO command to do this or you could use the command EXIT FOR – that
would cause the FOR loop to terminate immediately (this command was new in MMBasic V5.2).

Saving the Program
When you entered the program then saved it you might wonder where your program has actually
been saved to. The answer is that it was automatically written in the flash memory of the PIC32
chip. In fact, if you save a very large program you might see a delay of a second or two which is
the time needed by MMBasic to transfer a large amount of data into the flash memory.
Flash memory is non volatile which means that it will retain its contents when the power is
removed. This might not be important for a program that checks for prime numbers but if you have
programmed the Micromite to be the brains in your burglar alarm for the house you will not want it
to lose the program during a blackout.

27

The command MEMORY will report on how much memory was used by the program. With the
above program it will display something like this:

Flash:
 1K (1%) Program (20 lines)
 59K (99%) Free

RAM:
 1K (1%) 4 Variables
 0K (0%) General
 49K (99%) Free

As you can see, the program used little memory. This is another advantage of the Micromite; the
relatively huge memory space means that you can create large and complex programs and still run
them on this small and inexpensive chip.

28

Advanced BASIC Programming

n the previous chapter we covered the fundamentals of BASIC programming, enough to write a
small program to do a simple job. But BASIC has additional features that become important
when you are constructing a more complex program and we will cover them in this chapter.

As stressed before, this tutorial is not intended as a comprehensive manual and as such there are
many more specialised features that are not covered here. To discover these it is recommended that
you download the Micromite User Manual from: http://geoffg.net/micromite.html

Utility Commands
Before we go much further we should discuss some of the utility commands and features of
MMBasic that help you manage and run your program.

The first is the comment which is any text that follows the single quote character ('). A comment
can be placed anywhere and extends to the end of the line. If MMBasic runs into a comment it will
just skip to the end of it (ie, it does not take any action regarding a comment).
Comments should be used to explain non obvious parts of the program and generally inform
someone who is not familiar with the program how it works and what it is trying to do. Remember
that after only a few months a program that you have written will have faded from your mind and
will look strange when you pick it up again. For this reason you will thank yourself later if you use
plenty of comments.

The following are some examples of comments:
' calculate the hypotenuse
PRINT SQR(a * a + b * b)

or
INPUT var ' get the temperature

We have covered the EDIT command which will run the internal Micromite program editor. Other
useful commands are LIST which will list your program on the console (pausing every 24 lines) and
the RUN command which will start your program running.
If you want to completely clear the program in memory you can use the NEW command which will
erase everything leaving you with the maximum free program memory. The CLEAR command
will do the same for any variables (ie, delete them and recover the memory). As shown before, the
MEMORY command will list how much memory is currently being used.

The TRACE command is useful if you are trying to work out what your program is doing wrong.
TRACE ON will cause MMBasic to list the line number of each statement as it is executed and this

Chapter

3
I

http://geoffg.net/micromite.html

29

can help you trace the program flow. TRACE OFF will stop this feature. This command can also
be embedded in your program so you can turn on tracing for short sections of code if you wish.
Finally there is the OPTION command. This takes many forms and using it you can set many
options within MMBasic including how programs are listed, the attached devices (such as LCD
panels), how your program will be run and much more.

Arrays
An array is something which you will probably not think of as useful at first glance but when you
do need to use them you will find them very handy indeed.

An array is best thought of as a large number of variables which are created at the same time with
each variable being pointed to by a number, which is called the index. An array is created by the
DIM command, for example:

DIM n(300)

This created an array of 301 elements. Note that an array starts from zero so this is why there is an
extra element making the total 301. If you want to set element number 100 in this array to (say) the
number 876, you would do it this way:

n(100) = 876

Normally the index to an array is not a constant number as shown above but a variable which can be
changed to access different array elements.

As an example of how you might use an array, consider the case where you would like to record the
temperature for each day of the year and, at the end of the year, calculate the overall average. You
could use ordinary variables to record the temperature for each day but you would need 365 of them
and that would make your program very unwieldy indeed.

Instead, you could define an array to hold the values like this:
DIM days(365)

Every day you would need to save the temperature in the correct location in the array. If the number
of the day in the year was held in the variable doy and the maximum temperature was held in the
variable maxtemp you would save the reading like this:

Days(doy) = maxtemp

At the end of the year it would be simple to calculate the average for the year:
ave = 0
FOR i = 1 to 365
 ave = ave + days(i)
NEXT i
PRINT "Average is:" ave/365

This is much easier that adding up and averaging 365 individual variables.

The above arrays are single dimensioned but you can have multiple dimensions. For example, if
you wished to record the temperature over five years you could dimension the array like this:

DIM days(365, 5)

The first index is the day in the year and the second is a number representing the year. If you
wanted to set day 100 in year 3 to 24 degrees you would do it like this:

days(100, 3) = 24

30

In MMBasic you can have up to eight dimensions and the maximum size of an array is only limited
by the amount of free RAM that you have.

Integers
So far all the numbers and variables that we have been using have been floating point. As
explained before, floating point is handy because it will track digits after the decimal point and
when you use division it will return a sensible result.

However, the limitation of floating point is that it stores numbers as an approximation with an
accuracy of only 6 or 7 digits. For example, if you stored the number 1234.56789 in a floating
point variable then printed it out you will find that the value stored in the variable is actually
1234.57.

Most times this is not a problem but there are some cases when you need to accurately store large
numbers. Examples include tracking a GPS location on the planet's surface and interfacing with
digital frequency synthesisers.
As another example, let us say that you want to track time accurately so that you can compare two
different date/times to work out which one is earlier. The easy way to do this is to convert the
date/time to the number of seconds since some date (say 1st Jan 2010) - then finding the earliest of
the two is just a matter of using an arithmetic compare in an IF statement.
The problem is that the number of seconds since that date would far exceed the accuracy range of
floating point variables and this is where integer variables come in. An integer variable in
MMBasic can hold numbers up to nine million million million (or ±9223372036854775807 to be
precise), which is a very large number indeed.
The downside of using an integer is that it cannot store fractions (ie, numbers after the decimal
point). Any calculation that produces a fractional result will be rounded up or down to the nearest
whole number when assigned to an integer.

It is easy to create an integer variable, just add the percent symbol (%) as a suffix to a variable
name. For example, sec% is an integer variable. Within a program you can mix integers and
floating point and MMBasic will make the necessary conversions but if you want to maintain the
full accuracy of integers you should avoid mixing the two.

Just like floating point you can have arrays of integers with up to eight dimensions, all you need to
do is add the percent character as a suffix to the array name. For example: days%(365, 5).

Strings
Strings are another variable type (like floating point and integers). Strings are used to hold a
sequence of characters. For example, in the command:

PRINT "Hello"

The string "Hello" is a string constant. Note that a constant is something that does not change (as
against a variable, which does) and that string constants are always surrounded by double quotes.

String variables names use the dollar symbol ($) as a suffix to identify them as a string instead of a
normal floating point variable and you can use ordinary assignment to set their value. The
following are examples (note that the second example uses an array of strings):

Greeting$ = "Hello"
Car$(12) = "Holden"

31

You can also join strings using the plus operator:
Word1$ = "Hello"
Word2$ = "World"
Greeting$ = Word1$ + " " + Word2$

In which case the value of Greeting$ will be "Hello World".

Strings can also be compared using operators such as = (equals), <> (not equals), < (less than), etc.
For example:

IF Car$(12) = "Holden" THEN PRINT "Aussie"

String handling is one of MMBasic's strengths and there are many ways to join, pull apart and
generally manipulate strings using specialised string functions. For example, INSTR() will search a
string for one or more characters, MID$() will extract one part of a string from another and VAL()
will convert a string of numbers into a value that can be stored in a numeric variable.

For the details refer to the Functions section of the Micromite User Manual.
You need to be careful when you declare arrays of strings as you can rapidly run out of RAM
(general memory used for storing variables, etc). This is because MMBasic will by default allocate
255 bytes of RAM for each element of the array. For example, a string array with 100 elements
will by default use 25K of RAM. To alleviate this you can use the LENGTH qualifier to limit the
maximum size of each element. For example, the following declaration will limit the maximum
string length of each element in the array to 20 bytes:

DIM MyArray$(100) LENGTH 20

The resultant array will only use 2K of RAM.

Scientific Notation
Before we finish discussing data types we need to cover off the subject of floating point numbers
and scientific notation.

Most numbers can be written normally, for example 11 or 24.5, but very large or small numbers are
more difficult. For example, it has been estimated that the number of grains of sand on planet Earth
is 7500000000000000000. The problem with this number is that you can easily loose track of how
many zeros there are in the number and consequently it is difficult to compare this with a similar
sized number.
A scientist would write this number as 7.5 x 1018 which is much easier to comprehend.

MMBasic will automatically shift to scientific notation when dealing with floating point numbers
that are very large or small. For example, if the above number was stored in a floating point
variable the PRINT command would display the number as 7.5E+18. As another example, the
number 0.0000000456 would display as 4.56E-8 which is the same as 4.56 x 10-8.

You can also use scientific notation when entering constant numbers in MMBasic. For example:
SandGrains = 7.5E+18

MMBasic only uses scientific notation for displaying floating point numbers (not integers). For
example, if you assigned the number of grains of sand to an integer variable it would print out as a
normal number (with lots of zeros).

32

DIM Command
We have used the DIM command before for defining arrays but it can also be used to create
ordinary variables. For example, you can simultaneously create four of string variables like this:

DIM STRING Car, Name, Street, City

Note that because these variables have been defined as strings using the DIM command we do not
need the $ suffix, the definition alone is enough for MMBasic to identify their type. When you use
these variables in an expression you also do not need the type suffix: Eg:

City = "Sydney"

You can also use the keyword INTEGER to define a number of integer variables and FLOAT to do
the same for floating point variables. This type of notation can also be used to define arrays. For
example:

DIM INTEGER seconds(200)

Another method of defining the variables type is to use the keyword AS. For example:
DIM Car AS STRING, Name AS STRING, Street AS STRING

This is the method used by Microsoft (MMBasic tries to maintain Microsoft compatibility) and it is
useful if the variables have different types. For example:

DIM Car AS STRING, Age AS INTEGER, Value AS FLOAT

You can use any of these methods of defining a variable's type, they all act the same.
The advantage of defining variables using the DIM command is that they are clearly defined
(preferably at the start of the program) and their type (float, integer or string) is not subject to
misinterpretation. You can strengthen this by using the following commands at the very top of your
program:

OPTION EXPLICIT
OPTION DEFAULT NONE

The first specifies to MMBasic that all variables must be defined using the DIM or LOCAL
commands before they can be used. The second specifies that the type of all variables must be
specified when they are created.
Why are these two commands important?

They can help you to avoid a common programming error which is where you accidently misspell a
variable's name. For example, your program might have the current temperature saved in a variable
called Temp but in at one point you accidently misspell it as Tmp. This will cause MMBasic to
automatically create a variable called Tmp and set its value to zero.

This is obviously not what you want and it will introduce a subtle error which could be hard to find
– even if you were aware that something was not right. On the other hand, if you used the OPTION
EXPLICIT command at the start of your program MMBasic would refuse to automatically create
the variable and instead would display an error thereby saving you from a probable headache.
For small, quick and dirty programs, it is fine to allow MMBasic to automatically create variables
but in larger programs you should always disable this feature with OPTION EXPLICIT and
OPTION DEFAULT NONE.
When a variable is created it is set to zero for float and integers and an empty string (ie, contains no
characters) for a string variable. You can set its initial value to something else when it is created
using DIM. For example:

33

DIM FLOAT nbr = 12.56
DIM STRING Car = "Ford", City = "Perth"

You can also initialise arrays by placing the initialising values inside brackets like this:
DIM str$(2) = ("zero", "one", "two")

Note that because arrays start from zero this array actually has three elements with the index
numbers of 0, 1 and 2. This is why we needed three string constants to initialise it.

Constants
A common requirement in programming is to define a variable that represents a value without the
risk of the value being accidently changed - which can happen if standard variables were used for
this purpose. These are called constants and they can represent pin numbers, signal limits,
mathematical constants and so on.

You can create a constant using the CONST command. This defines an identifier that acts like a
variable but is set to a value that cannot be changed. For example:

CONST BatteryVoltagePin = 26
CONST BatteryMinimum = 11.5

These constants can then be used in a program where they make more sense to the casual reader
than simple numbers. For example:

IF PIN(BatteryVoltagePin) < BatteryMinimum THEN SoundAlarm

It is good programming practice to use constants for any fixed number that represents an important
value. Normally they are defined at the start of a program where they are easy to see and
conveniently located for another programmer to adjust (if necessary). Using the above as an
example, you might replace the battery with a different technology and therefore you need to
change the minimum battery voltage. That could be easily accomplished if you originally defined
this value as a constant at the start of your program.

Subroutines
A subroutine is a block of programming code that is contained within a module and can be called
from anywhere within your program. To your program it looks like a built in MMBasic command
and can be used the same. For example, assume that you need a command that would signal an
error by printing a message on the console and then terminate the program. You could define the
subroutine like this:

SUB ERRMSG
 PRINT "Error detected"
 END
END SUB

Note that the END command simply terminates the running program and returns control to the
command prompt.

With this subroutine embedded in your program all you have to do is use the command ERRMSG
whenever you want to display the message and stop. For example:

IF A < B THEN ERRMSG

The definition of a subroutine can be anywhere in the program but typically it is at the end. If
MMBasic runs into the definition while running your program it will simply skip over it.

34

This is fine enough but it would be better if a more useful message could be displayed, one that
could be customised every time the subroutine was called. This can be done by passing a string to
the subroutine as an argument (sometimes called a parameter).

In this case the definition of the subroutine would look like this:
SUB ERRMSG Msg$
 PRINT "Error: " + Msg$
 END
END SUB

Then when you call the subroutine, you can supply the string to be printed on the command line of
the subroutine. For example:

ERRMSG "Number too small"

When the subroutine is called like this the message "Error: Number too small" will be
printed on the console and the program terminated. Inside the subroutine Msg$ will have the value
of "Number too small" when called like this and it will be concatenated in the PRINT statement to
make the full error message.

A subroutine can have any number of arguments which can be float, integer or string with each
argument separated by a comma. Within the subroutine the arguments act like ordinary variables
but they exist only within the subroutine and will vanish when the subroutine ends. You can have
variables with the same name in the main program and they will be hidden within the subroutine
and be different from arguments defined for the subroutine (at the risk of making debugging
harder).

The type of the argument to be supplied can be specified with a type suffix (ie, $, % or ! for string,
integer and float). For example, in the following the first argument must be a string and the second
an integer:

SUB Msg$, Nbr%
 …
END SUB

MMBasic will convert the supplied values if it can, so if your program supplied a floating point
value as the second argument MMBasic will convert it to an integer. If MMBasic cannot convert
the value it will display an error. For example, if you supplied a string for the second argument
your program will stop with an error.
You do not have to use the type suffixes, you can instead define the type of the arguments using the
AS keyword similar to the way it is used in the DIM command. For example, the following is
identical to the above example:

SUB Msg AS STRING, Nbr AS INTEGER
 …
END SUB

Of course, if you used only one variable type throughout the program and used OPTION
DEFAULT to set that type you could ignore the question of variable types completely.

Local Variables
Inside a subroutine you will need to use variables for various tasks. In portable code you do not
want the name you chose for such a variable to clash with a variable of the same name in the main
program. To this end you can define a variable using LOCAL within the subroutine. The syntax

35

for LOCAL is identical to the DIM command, this means that the variable can be an array, you can
set the type of the variable and you can initialise it to some value.
For example, this is our ERRMSG subroutine but this time it has been extended it to use a local
variable for joining the error message strings.

SUB ERRMSG Msg$
 LOCAL STRING tstr
 tstr = "Error: " + Msg$
 PRINT tstr
 END
END SUB

The variable tstr is declared within the subroutine, which means that (like the argument list) it
will only exist within the subroutine and will vanish when the subroutine exits. You can have a
variable called tstr in your main program and it will be different from the variable tstr in the
subroutine.
You should always use local variables for operations within your subroutine because they help
make the subroutine much more self contained and portable.

Functions
Functions are similar to subroutines with the main difference being that a function is used to return
a value in an expression. For example, if you wanted a function to select the maximum of two
values you could define:

FUNCTION Max(a, b)
 IF a > b
 Max = a
 ELSE
 Max = b
 ENDIF
END FUNCTION

Then you could use it in an expression:
x = 21
y = 25
PRINT "The highest number is" Max(x, y)

As you can see, the function name is used as an ordinary local variable inside the subroutine. It is
only when the function returns that the value is made available to the expression that called it.

The rules for the argument list in a function are similar to subroutines. The only difference is that
parentheses are required around the argument list when you are calling a function (they are optional
when calling a subroutine).
To return a value from the function you assign a value to the function's name within the function. If
the function's name is terminated with a type suffix (ie, $, a % or a !) the function will return that
type (string, integer or float), otherwise it will return whatever the OPTION DEFAULT is set to.
For example, the following function will return a string:

FUNCTION LVal$(nbr)
 IF nbr = 0 THEN LVal$ = "False" ELSE LVal$ = "True"
END FUNCTION

36

You can explicitly specify the type of the function by using the AS keyword and then you do not
need to use a type suffix (similar to defining a variable using DIM). This is an example:

FUNCTION LVal(nbr) AS STRING
 IF nbr = 0 THEN LVal = "False" ELSE LVal = "True"
END FUNCTION

Calculate Days
We have covered a lot of programming commands and techniques so far in this tutorial and, to give
an example of how they work together, the following is an example program that will calculate the
number of days between two dates.

It works by getting two dates from the user at the console and converts then to the number of days
since 1900. Then a simple subtraction will give the number of days between them.

' Example program to calculate the number of days between two dates

OPTION EXPLICIT
OPTION DEFAULT NONE

DIM STRING str
DIM FLOAT d1, d2

DO
 PRINT
 PRINT "Enter the date as dd mmm yyyy"
 PRINT " First date";
 INPUT str
 d1 = GetDays(str)
 IF d1 = 0 THEN PRINT "Invalid date!" : CONTINUE DO
 PRINT "Second date";
 INPUT str
 d2 = GetDays(str)
 IF d2 = 0 THEN PRINT "Invalid date!" : CONTINUE DO
 PRINT "Difference is" ABS(d2 - d1) " days"
LOOP

' Calculate the number of days since 1/1/1900
FUNCTION GetDays(d$) AS FLOAT
 LOCAL STRING Month(11) =
("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec")
 LOCAL FLOAT Days(11) = (0,31,59,90,120,151,181,212,243,273,304,334)
 LOCAL FLOAT day, mth, yr, s1, s2

 ' Find the separating space character within a date
 s1 = INSTR(d$, " ")
 IF s1 = 0 THEN EXIT FUNCTION
 s2 = INSTR(s1 + 1, d$, " ")
 IF s2 = 0 THEN EXIT FUNCTION

 ' Get the day, month and year as numbers
 day = VAL(MID$(d$, 1, s2 - 1)) - 1
 IF day < 0 OR day > 30 THEN EXIT FUNCTION
 FOR mth = 0 TO 11
 IF LCASE$(MID$(d$, s1 + 1, 3)) = Month(mth) THEN EXIT FOR

37

 NEXT mth
 IF mth > 11 THEN EXIT FUNCTION
 yr = VAL(MID$(d$, s2 + 1)) - 1900
 IF yr < 1 OR yr >= 200 THEN EXIT FUNCTION

 ' Calculate the number of days including adjustment for leap years
 GetDays = (yr * 365) + FIX((yr - 1) / 4)
 IF yr MOD 4 = 0 AND mth >= 2 THEN GetDays = GetDays + 1
 GetDays = GetDays + Days(mth) + day
END FUNCTION

Note that the line starting LOCAL STRING Month(11) has been wrapped around because of the
limited page width – it is one line as follows:
LOCAL STRING Month(11) = ("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec")

When this program is run it will ask for the two dates to be entered and you need to use the form of
dd mmm yyyy. The following screen capture shows what the program looks like when it is
running.

The main feature of the program is the user defined function GetDays() which takes a string
entered at the console, splits it into its day, month and year components then calculates the number
of days since 1st January 1900. This function is called twice, once for the first date and then again
for the second date. It is then just a matter of subtracting one date (in days) from the other to get the
difference in days.

We will not go into the detail of how the calculations are made (ie, handling leap years) as that can
be left as an exercise for the reader. However it is appropriate to point out some features of
MMBasic that are used by the program.
It demonstrates how local variables can be used and how they can be initialised. In the function
GetDays() two arrays are declared and initialised at the same time. These are just a convenient
method of looking up the names of the months and the cumulative number of days for each month.
Later in the function (the FOR loop) you can see how they make dealing with twelve different
months quite efficient.

38

Another feature highlighted by this program is the string handling features of MMBasic. The
INSTR() function is used to locate the two space characters in the date string and then later the
MID$() function uses these to extract the day, month and year components of the date. The VAL()
function is used to turn a string of digits (like the year) into a number that can be stored in a
numeric variable.

Note that the value of a function is initialised to zero when it is first executed and this makes error
handling easy because we can just exit the function if an error is discovered. It is then the
responsibility of the calling program code to check for a return value of zero which signifies an
error.

This program illustrates one of the benefits of using subroutines and functions which is that when
written and fully tested they can be treated as a trusted "black box" that does not have to be opened.
For this reason functions like this should be the first component written and they should be properly
tested before you go on to writing the rest of the program.

There are a few features of this program that we have not covered before. The first is the addition
of the suffix AS FLOAT to the definition of GetDays(). This tells MMBasic that the function
will return a floating point number. Another is the MOD operator which will calculate the
remainder of dividing one number into another. For example, if you divided 4 into 15 you would
have a remainder of 3 which is exactly what the expression 15 MOD 4 will return.
The EXIT FOR command will exit a FOR loop even though it has not reached the end of its
looping, EXIT FUNCTION will immediately exit a function even though execution has not reached
the end of the function and CONTINUE DO will immediately cause the program to jump to the end
of a DO loop and execute it again.
This program is not particularly useful but it is intended to demonstrate many of the characteristics
of programming in MMBasic. So, pull out the Micromite User Manual and work your way through
the program code – it should be a rewarding experience.

Good Programming Habits
Before we finish with the subject of BASIC programming it will be worth providing some hints on
how to write programs that are easy to understand and maintain. This can be more important than
one might think. A poorly written program is more likely to contain bugs and people will be
reluctant to try and fix such a program because the logic is hard to understand.

For a short program you can ignore many of these hints but for larger programs they can be a
lifesaver.

1. Use lots of comments. They are the first thing that people will read when they pick up your
program and they are invaluable in rendering the program and its logic understandable.

2. Use indenting to illustrate the logic of loops, multiline IF statements, subroutines, etc.
Without indenting the casual reader would have to search many lines to determine when a
block of code has terminated.

3. Keep the comments and indenting up to date. When modifying a program it is easy to forget
that these features also need updating and nothing is worse than a misleading comment or
indentation.

4. Define all variables using DIM or LOCAL statements at the start of the program, subroutine
or function. Do not let variables be automatically created, instead use OPTION EXPLICIT
and OPTION DEFAULT NONE.

39

5. Use variable names that make sense. For a simple loop you can use a short variable like 'tmp'
but for something important that is scattered throughout the program use a descriptive variable
name such as MaxSpeedLimit.

6. Define significant numbers as constants at the start of the program using the CONST
command.

7. MMBasic does not worry about upper or lower case characters in identifiers (variable names,
subroutine names, etc) but regardless, you should use a consistent case. For example, you can
use either MaxSpeedLimit or maxspeedlimit in a program, but you should not use both.

8. Package unique and self contained pieces of code into a subroutine or function. These have
limited entry/exit points which means that someone can read through such a module and more
easily satisfy themselves that it is working correctly. From then on it can be treated as a
trusted portion of code.

9. Don't use the GOTO command unless you absolutely have to. Features such as multiline IF
statements, subroutines and functions are much easier to understand than a program which
uses GOTOs to jump around.

10. Don't be obsessed with optimising your code to make it faster for MMBasic to interpret.
MMBasic makes many optimisations of its own and anything that you do will have little
effect on speed and may obscure the logic of the program. Normally only a very small part of
a program needs to run fast and if that is the case that portion would be better being written in
C which can be embedded in the BASIC program.

40

Micromite Input/Output

he Micromite has an extensive range of input/output facilities which allow your BASIC
program to interact with the outside world. These are crucial because the Micromite is
essentially designed to be an embedded controller.

The input/output features of the Micromite include:

 Digital inputs.
 Digital outputs
 Analog inputs.
 Frequency, period and counting inputs.
 Pulsed digital outputs.
 Pulse width measurement inputs.
 Pulse Width Modulated (PWM) outputs.
 Servo driving outputs.
 A range of special devices for measuring temperature, distance and more.

Configuring a Pin
An input/output pin is configured using the SETPIN command. This command takes the form:

SETPIN nn, mode

where 'nn' is the pin number on the Micromite and 'mode' is how you would like the pin to be
configured. This last parameter can be:

AIN Analogue input (ie, measure voltage)
DIN A digital input.

FIN Measure the frequency of the signal on a pin.
PIN Measure the period (ie, the time between positive going edges) of the signal on a pin.

CIN Count the number of pulses on a pin.
DOUT A digital output.

For example, SETPIN 14, DOUT will setup pin fourteen as a digital output.

Note that the pin number 'nn' refers to the physical pin number of the chip as shown in the data
sheet. This makes it easy for you to cross reference a component connected to the chip with the
programming commands that will manipulate it.

Chapter

4
T

41

To read from an input pin you use the PIN() function. For example:
var = PIN(4)

This will read the value of pin 4 and save it to the variable var. To write to a pin (ie, set its output)
you use the same PIN function but this time you assign a value to it. For example:

PIN(6) = 0

will set the output of pin 6 to zero (which generally means a logic low). In this case the PIN()
construct is used as a command. This dual nature of the PIN() construct (either input or output)
sometimes confuses newcomers to MMBasic so watch out for it.

Digital Inputs
A digital input is the simplest type of input configuration. If the input voltage is higher than 2.5V
the logic level will be true (numeric value of 1) and anything below 0.65V will be false (numeric
value of 0).
What if the input is between 0.65V and 2.5V? The Micromite’s inputs employ what is called a
Schmitt Trigger which is a circuit that prevents the inputs from flipping on and off with small
variations of the input voltage (ie, noise on the input). It works like this; as the input rises from zero
the value of the pin will remain at logic false (ie, zero) until the voltage exceeds 2.5V at which point
it will change to true (ie, one). Then, if the voltage drops, it will remain at true until the input drops
below 0.65V at which point the pin's value will change to false.
For most inputs the maximum input voltage
is 3.6V however some pins are rated for
5.5V (check the pinout diagram in the User
Manual which lists the 5V tolerant pins).
If the input voltage is over the maximum
allowable level you should use a resistor and
a clamping diode on the input as illustrated.

Because the Micromite’s input impedance is
very high (leakage is less than 1µA) you can
use a large valued input resistor – with a
10K resistor this circuit would be suitable
for any input voltage up to 50V.
In your BASIC program you would set the input as a digital input and use the PIN() function to get
its level. For example:

SETPIN 9, DIN
IF PIN(9) = 1 THEN PRINT “High”

The SETPIN command configures pin 9 as a digital input and the PIN() function will return the
value of that pin (the number 1 if the pin is high). The IF command will then execute the command
after the THEN statement if the input was high. If the input pin was low the program would just
continue with the next line in the program.
Because the PIN() function will return 1 when the input is high and the IF … THEN command
treats any non zero number in its conditional statement as true, you could rewrite the last line to
read:

IF PIN(9) THEN PRINT “High”

10K

Digital Input
greater than 3.3V

Micromite

Input Pin

Schottky
diode

3.3V

42

In some cases you might want to read the input from a number of pins simultaneously. To do this
you can use the PORT() function which has the form:

val = PORT(start, nbr)

'start' is the starting pin number and 'nbr' is the number of consecutive pin numbers that you want to
read from. For example, if you wanted to read the values of pins 23, 24, 25 and 26 you would use
the function like this:

val = PORT(23, 4)

ie, read four consecutive input pins starting with pin 23. The user manual goes into more detail and
it is worth consulting if you need to use the PORT() function.

Switch Inputs
To sense the position of a switch you need a pull up resistor whose job is to apply a voltage across
the switch. The input can be configured as a digital input then, when the switch is closed the
contacts will pull the input to zero and the PIN() function would return zero for closed and one for
open.
Rather than using an external resistor the Micromite input can be specified with an internal pullup
resistor. This resistor is internal to the Micromite and (when specified) will be connected between
the input pin and the 3.3V supply (its value is about 100K) as illustrated in the diagram below.

To specify a pullup resistor you use SETPIN as follows:
SETPIN pin, DIN, PULLUP

Using either an internal or external pullup resistor you also
need to consider the issue of contact bounce. This is when
the switch contacts mechanically touch and then bounce
apart momentarily due to the momentum of the mechanical
assembly. Because the Micromite runs very fast a BASIC
program could see this as a sequence of quick button
presses rather than a single press.
You could check for this in your program, for example by
checking 100ms after the first contact closure to confirm
that the contacts are indeed closed. A simpler solution is to
connect a 100nF capacitor across the switch contacts as
illustrated. This capacitor in association with the pullup resistor will average out any rapid contact
bounce so that the program will see a smooth transition from on to off and vice versa.

Digital Outputs
All I/O pins can be configured as a standard digital output. The command to do this is:

SETPIN pin, DOUT

This means that when an output pin is set to logic low it will pull its output to zero and when set
high it will pull its output to 3.3V. In BASIC this is done with the PIN command. For example:

PIN(15) = 0

will set pin 15 to low, while
PIN(15) = 1

will set it high (in fact any non zero value can be used to set the output high).

3.3V

Micromite Switch
100nF

Internal
100KO

43

When operating in this mode, a pin is capable of sourcing or sinking about 10mA which is
sufficient to drive a LED or other logic circuits running at 3.3V.
The pins that are 5V tolerant can be used to drive 5V logic via an open collector output. This
means that the output driver will pull the output low (to zero volts) when the output is set to a logic
low but will go to a high impedance state when set to logic high.

If you then connect a pull-up resistor to 5V on the output the logic high level will be 5V (instead of
3.3V using the standard output mode). The maximum pull-up voltage in this mode is 5.5V.

The diagram shown below illustrates how an open collector system works. Note that the circuit
should really be called open drain because the PIC32 uses a FET as the driver but open collector is
a more common term and for
consistency it is used here.

To set an output as open collector
you use the SETPIN command in
BASIC as you normally would but
you append OC to the command to
specify an open collector output.
For example:
SETPIN pin, DOUT, OC

For driving high voltage and/or
high current loads such as relays
you should use a transistor (either bipolar or FET) to drive the load. To switch 240V AC a more
elegant solution is to use a solid state relay. These have full isolation between their input and
output and can switch 240V AC loads with a current of up to 10 amps. Some can be directly
connected to a Micromite output pin but others need a drive voltage over 4V and in that case you
should use an open collector output and a pull up resistor.

Other useful output devices are reed relays and optocouplers. Generally they can be directly driven
by an output pin, are easy to use and provide isolation between the Micromite and the circuit that
you are driving.
As with the PIN() construct you can also use PORT() as a method of setting a number of outputs
simultaneously to some state. For example, the following will simultaneously set 5, 6 and 7 to the
low logic state (ie, zero volts):

PORT(5, 3) = 0

Sometimes you need to generate a pulse on an output pin. This can be conveniently done with the
PULSE command:

PULSE pin, mSec

Where 'pin' is the pin number and 'mSec' is the desired pulse width in milliseconds. This last
parameter can be a fraction (ie, 0.1ms) so very short pulses down to a few microseconds can be
generated. The polarity of the pulse is opposite to the current state of the pin. For example, if the
output of the pin is currently low the pulse will be positive. Pulses can be up to many days in
length and any pulse longer that 3ms will be run in the background – this means that the program
will continue with the following commands while the pulse will automatically terminate when its
time is up.

Micromite

Logic High = 5V
Logic Low = 0V

R1
10K

+5V

G

D

S

Output Pin
(open collector)

44

Analog Input
The 28-pin Micromite has ten I/O pins that are capable of voltage measurement and the 44-pin
Micromite has thirteen. They are marked as ANALOG on the pin diagrams for the Micromite. To
set an I/O pin to analog you use the command:

SETPIN nn, AIN

Where AIN stands for Analog IN and 'nn' is the pin number that you want to configure.

The analog input range is from zero to whatever the Micromite's supply voltage is and the PIN()
function will return the input reading in volts. For example, if you connected a 1.5V battery to pin
4 and run the following program you could expect to see a value of about 1.5:

SETPIN 4, AIN
PRINT PIN(4)

Note that the Micromite assumes that the supply voltage is exactly 3.3V and it uses that number as
its reference. If your supply is not exactly 3.3V you can scale the reading by using a digital meter
to measure the supply voltage and use that value to correct the reading. For example, if you
measured the Micromite's supply voltage as 3.1V the following expression will return the correct
reading on an analog input:

PRINT (PIN(4) / 3.3) * 3.1

To measure voltages greater than 3.3V you will need a voltage divider and that will require the
reading be scaled in the BASIC program to give the correct value.

Rather than finding precision
resistors for the voltage divider a
simpler approach is to connect a
constant voltage to the input of
the voltage divider, then record
the voltage reported by the
Micromite on its input pin
(Vmm) and the voltage at the
input of the voltage divider
(Vmes) using a digital
multimeter.
Then the reading could be scaled
thus:

PRINT PIN(nn) / (Vmm / Vmes)

Note that to retain the accuracy of the reading the source resistance needs to be 10K or less. This
means that in most circuits the value of R2 should be 10K or less.

For small voltages you will need an amplifier to bring the input voltage into a reasonable range for
measurement. The diagram below shows a typical arrangement using the popular and inexpensive
LM324 quad operational amplifier. The LM324 can operate from a single 5V supply and contains
four identical amplifiers in the one 14 pin package.

R1

R2

Input

Micromite

Input Pin

VmmVmes

45

The gain of the amplifier is determined by the ratio of R2 to R1 plus 1 and using the components
shown the gain is 101. This number should be used in the BASIC program so that the readings are
scaled to represent the input voltage.
For example:

PRINT PIN(9) / 101

Alternatively, you could adopt the technique used to scale the reading for a voltage divider (as
described on the previous page). The result will be the same.

Power Supply Voltage
As mentioned above, you need to determine the Micromite's supply voltage to obtain an accurate
voltage measurement. This is not a problem when you are using a fixed voltage regulator but when
the Micromite is battery powered the supply voltage can vary over a wide range. In this case a good
method of determining the power supply voltage is to use a voltage reference chip. This will
generate a precise and known voltage and from that the battery voltage can be derived.

The Texas Instruments REF3020 is a typical voltage reference chip that is good for this purpose. It
comes in a simple three pin package and it will provide a precise 2.048V output. Its output should
be connected to a spare analog input on the Micromite (say pin 5) and then the power supply
voltage derived using the following expression:

SETPIN 5, AIN
PwrVolts = (PIN(5) / 2.048) * 3.3

This assumes that you are using a reference with a 2.048V output. If yours is different you will
need to substitute its output voltage into the expression.
Once you have determined the Micromite's supply voltage you can then scale other voltage
measurements as described previously. For example:

SETPIN 4, AIN : SETPIN 5, AIN
PwrVolts = (PIN(5) / 2.048) * 3.3
PRINT (PIN(4) / 3.3) * PwrVolts

Knowing the batteries' voltage is also useful because you can use that value in an IF statement to
raise an alarm when the battery is almost exhausted.

46

Frequency and Period Measurement
Four pins on the Micromite can be configured as to measure frequency, period or just count pulses
on the input. These are labelled as COUNT in the pinout diagrams.
For example, the following will print the frequency of the signal on pin 15:

SETPIN 15, FIN
PRINT PIN(15)

The value returned by the PIN() function is the measured frequency in Hz. You can also
configure the pins to measure the period (in milliseconds) between the rising edges of the input
signal or to simply count the number of pulses received. The response to input pulses is very fast
and the Micromite can count pulses as narrow as 10nS (although the maximum frequency of the
pulse stream is still limited to about 200KHz).

You can measure the pulse width of an incoming signal by using the PULSIN() function. This has
a number of options which can be difficult to explain so you should refer to the Micromite User
Manual if you wish to use it.

Interrupts
Interrupts are a handy way of dealing with an event that can occur at an unpredictable time. An
example is when the user presses a button. In your program you could insert code after each
statement to check to see if the button has been pressed but an interrupt makes for a more cleaner
and readable program.
When an interrupt occurs MMBasic will interrupt the main program and execute a special section of
code then, when that is finished, return to the main program. The main program will be completely
unaware of the interrupt and will carry on as normal.

An interrupt is setup using the SETPIN command:
SETPIN pin, type, subroutine

'pin' is the pin number which will trigger the interrupt, 'type' is the type of interrupt and can be
INTH for a rising edge signal transition, INTL for falling edge transition or INTB for any change in
the input (ie, interrupt on both rising and falling). 'subroutine' is the subroutine to execute when the
interrupt trigger occurs – this is just an ordinary subroutine (nothing special).

You can set an interrupt on any I/O pin and you can have up to ten I/O pins simultaneously
operating as interrupts, each with its own interrupt subroutine or, if you wish, sharing one or more
subroutines. If two interrupts occur simultaneously MMBasic will execute the subroutine
associated with the interrupt that was defined first, then when it has finished (and the next interrupt
condition still exists) it will execute the next interrupt subroutine, and so on.
While MMBasic is executing the interrupt subroutine all other interrupts are ignored. This means
that if your interrupt code takes too long to execute there is a chance that another interrupt (such as
a button push) might arise and vanish while your first interrupt subroutine is still executing – with
the result that the new interrupt would be missed. For this reason interrupt subroutines should be as
short as possible.

As an example of defining an interrupt the following code fragment will detect if the user has
pressed a button (connected to pin 16) and, if so, will set the output of pin 15 high (this could
operate a relay or something similar).

47

SETPIN 15, DOUT
SETPIN 16, INTL, MyInt
DO
 ‘ main processing loop
 ‘ more processing
LOOP

‘ interrupt routine
SUB MyInt
 PIN(15) = 1
END SUB

In the first line of the fragment we configure pin 15 as an output (this will drive our relay or
whatever) and in the second line we configure pin 16 to be a digital input that will generate an
interrupt on the high to low transition. The interrupt code is held in the subroutine MyInt and this
is specified as the third parameter to the SETPIN command.
The DO…LOOP represent the main processing loop which runs forever. When the user presses the
button connected to pin 16 the voltage on that pin will drop to zero, MMBasic will recognise this as
a high to low transition and automatically interrupt the main program and execute the subroutine
MyInt. This routine is very short; it just sets the output high and exits the subroutine which then
allows the main program to continue as before. The main processing loop is completely oblivious
to the interrupt. Normally an interrupt subroutine will have more than a single line in it but it does
not have to be complicated – it should just do its job then exit.
Many other parts of MMBasic can also generate interrupts. For example, you can specify an
interrupt that repeats with a specified number of milliseconds between each interrupt (the tick
timer), you can have an interrupt when an IR remote control signal is received or when a certain
number of bytes has been received on a serial interface.
Normally MMBasic will respond to a single interrupt within 100uS so you can use interrupts to
catch reasonably fast events. For example, ignition pulses in a petrol engine.

PWM and Servo Outputs
Five I/O pins can generate PWM or servo signals. PWM stands for Pulse Width Modulation which
is a constant square wave output with a specified duty cycle and frequency. By varying the duty
cycle (the ratio between the positive pulse and the negative pulse) your program can generate a
synthesised voltage which can be used to control devices such as motor controllers which need an
analog input. It can also be used to control the brightness of LEDs or incandescent lamps (read
more about this technique at: http://learn.sparkfun.com/tutorials/pulse-width-modulation).
Another use for the PWM outputs is to generate a signal which, with a small loudspeaker, can
generate a range of audible tones.
The PWM outputs on the Micromite are organised into two channels, one of which has up to three
outputs and the second two (for a maximum of five outputs). Within each channel all outputs will
have the same frequency but each can have a different duty cycle. On the pin out diagrams for the
Micromite the outputs for the first channel are labelled 1A, 1B and 1C while the two outputs for the
second are 2A and 2B.

The syntax of the PWM command is:
PWM ch, freq, A-DutyCycle, B-DutyCycle, C-DutyCycle

http://learn.sparkfun.com/tutorials/pulse-width-modulation).

48

'ch' is the channel number (1 or 2), 'freq' is the frequency (20Hz to 500kHz) and the remaining three
parameters are the duty cycle for each of the outputs. If you do not want to use an output you can
leave that output off the list and that pin can be used for some other purpose. After this command
has been executed the output will run continuously unless changed or the Micromite is reset.
For example, the following will set the PWM 1A output to 1KHz with a duty cycle of 20% and 1B
to a duty cycle of 60% at the same frequency. The pin allocated to 1C will not be affected and can
be used for some other purpose:

PWM 1, 1000, 20, 60

This command can be used repeatedly to change the duty cycle (and frequency if required) of the
PWM outputs at will.
The Micromite can also use the PWM outputs to control servos. Servos are a motor with integrated
gears and a control system that allows the position of the shaft to be precisely controlled. The
Micromite can simultaneously control up to five servos.

Depending on their size servos can be quite powerful and provide a convenient way for the
Micromite to control the mechanical world. Standard servos allow the shaft to be positioned at
various angles, usually between -90 and +90 degrees. The position of the servo is controlled by a
pulse which is repeated every 20ms. Generally a pulse width of 0.8ms will position the rotor at
-90º, a pulse width of 2.2ms will position it at +90º and 1.5ms will centre the rotor.
The SERVO command is similar to the PWM command:

SERVO ch, 1A, 1B, 1C

'ch' is the channel number (1 or 2) and the remaining three parameters are the pulse width (in
milliseconds) for each of the outputs. On the Micromite pin out charts the servo outputs are
designated as PWM 1A, PWM 1B, PWM 2A, etc. This is because the PWM and SERVO
commands are closely related and use the same I/O pins. As with the PWM command, if you do not
want to use an output you can leave it off the end of the SERVO command.

Special Device Support
There are some devices that are often used in microcontroller projects and the Micromite provides
special support for these. Using this built in support you can easily add features such as an infra red
remote control or keypad input to your project with just a few lines of BASIC code.
These special devices are:

 Infrared remote control receiver and transmitter
 The DS18B20 temperature sensor and DHT22 temperature/humidity sensor
 LCD display modules
 Numeric keypads
 Battery backed clock
 Ultrasonic distance sensor

Rather than go into the detail of each device here check the Micromite User Manual. The section
"Special Device Support" provides a description of each along with examples of their use.

49

Embedded Features

he Micromite is primarily designed as an embedded controller, that is a computing module
that is inside some product or device and not necessarily exposed to the user. In this role
features such as timing, power consumption and recovering from errors are important.

The Micromite's support for embedded controller applications includes:

 Tracking the date/time and internal timers that count milliseconds.
 Adjusting the speed and power consumption of the chip.
 Putting the chip to sleep.
 Recovering from errors.
 Saving key data to be recovered on power up.

Keeping Time
In the Micromite there are many ways that a program can track the time including an internal
clock/calendar, a millisecond timer, timed interrupts and the PAUSE command.
The current date and time can be accessed using the special identifiers DATE$ and TIME$ which
act like pre defined variables. This internal clock is reset to zero on power up but you can use the
RTC command to set the correct time from an external Real Time Clock (RTC).

Both the time and date are returned as strings which you can then pull apart using the string
functions or just use as a string. As an example, if you entered this at the command prompt:

PRINT DATE$ TIME$

You could expect to see something like this: 2/11/16 14:53:21

TIMER is another special identifier which returns the number of milliseconds since being reset to
zero (it is also reset when the Micromite is powered up). You can use it to measure the time
difference between two events as shown in the following example:

TIMER = 0
 ' section of code that needs to be timed
PRINT TIMER "ms"

The TIMER function can also be used to wait for a certain length of time but a better method is to
use the PAUSE command which will halt the execution of a program for a precise number of
milliseconds.

Chapter

5
T

50

For example, to create a 12ms wide pulse you could use the following:
SETPIN 4, DOUT
PIN(4) = 1
PAUSE 12
PIN(4) = 0

Sometimes, after setting a control signal for a device, you might be required to wait for a defined
number of milliseconds before you can set the next control signal. The PAUSE command is perfect
for this type of job and many similar jobs that require a delay.

MMBasic also allows you to set up to four "tick" timers. Each acts like the tick of a clock and on
each tick MMBasic will execute an interrupt subroutine specified in the command. Up to four
"tick" interrupts can be setup. The tick times are specified in milliseconds and can range from a
few milliseconds to many days. Think of it as the regular "tick" of a watch.

For example, the following code fragment will print the current time and the voltage on pin 2 every
second. This process will run independently of the main program which could be doing something
completely unrelated.

SETPIN 2, AIN
SETTICK 1000, DoIint
DO
 ‘ main processing loop
LOOP

SUB DoIint ‘ tick interrupt
 PRINT TIME$, PIN(2)
END SUB

The second line sets up the "tick" interrupt, the first parameter of SETTICK is the period of the
interrupt (1000 ms) and the second is the interrupt subroutine which will be executed on every
"tick".

Every second (ie, 1000 ms) the main processing loop will be interrupted and the program starting at
the label DoIint will be executed.

CPU Speed and Power Consumption
Controlling the power consumption of the chip is important if the device is to be battery powered.
In the Micromite this can be done via the CPU command which is used to control the processor's
speed and therefore the Micromite's power consumption.

For example, CPU 5 will set the processor's clock speed to 5MHz with a power requirement of
about 6mA and CPU 48 will set it to 48MHz which causes the Micromite to draw about 31mA.
The BASIC program can change this as often as it likes so it is possible to speed up the processor to
execute a few lines of code and then revert back to a slow speed for the non important portions of
the program. Halving the clock speed roughly halves the power drain so this is a very useful
technique in a battery powered device.

Sleeping
In some cases you would prefer that the Micromite shut down completely to conserve power. In
this mode the current drawn by the Micromite can be as low as 40µA.

51

The sleep period can be for a number of seconds or indefinitely with the "wakeup" from sleep
triggered by an external signal. Both modes are initiated by the CPU SLEEP command.
Normal use for the command is:

CPU SLEEP seconds

Where 'seconds' is the required sleep time in seconds which can range from one second to days.

If you are waiting on some external event the program could set the sleep time to something quite
short (say 5 seconds) and, on waking up, it could make a quick check to see if there is anything to
be done and, if there is nothing to do, immediately go back to sleep again. Because the time awake
would be so short the average current drain would be small.

Alternatively, if you know the required sleep time in advance, the sleep time can be specified
precisely (up to 10 days).

If you wish the Micromite to wake on an external signal (say a button press) you can use the CPU
SLEEP command without specifying the time. For example:

CPU SLEEP

In this case MMBasic will automatically configure the WAKEUP pin as a digital input (pin 16 on
the 28-pin Micromite or pin 43 on the 44-pin chip). During sleep this pin will be monitored and the
CPU automatically woken up when its input changes state (ie, goes from high to low or vice versa).

AUTORUN
As an embedded controller the power can be interrupted at any time and when it is reapplied you
want the program to automatically start running. This is achieved by setting AUTORUN on:

OPTION AUTORUN ON

Then, when the power is cycled the Micromite will automatically run the program in memory.

Watchdog Timer
When the Micromite is used in an embedded context it will appear to the user as a custom
integrated circuit performing some special task. The user need not know anything about what is
running inside the chip.

However there is always the possibility that a fault in the program could cause MMBasic to
generate an error and return to the command prompt. This would be of little use in an embedded
situation as the Micromite would not have anything connected to the console. Another possibility is
that the BASIC program could get itself stuck in an endless loop for some reason. In both cases the
visible effect would be the same… the Micromite would stop doing its programmed job until the
power was cycled.

To guard against this the watchdog timer can be used. This is a timer that counts down to zero and
when it reaches zero the processor will be automatically restarted (the same as when power was first
applied), even if MMBasic was sitting at the command prompt. The WATCHDOG command
specifies how many milliseconds are allowed before the reset. For example, the following will set
the watchdog timer to 200 milliseconds:

WATCHDOG 200

Normally this command will be placed in strategic locations in the program to keep resetting the
timer and therefore preventing it from counting down to zero. Then, if a fault occurs, the timer will
not be reset, it will reach zero and the program will be restarted (assuming that AUTORUN is set).

52

Saving Data
Because the Micromite does not usually have a normal storage system (such as an SD card) it needs
to have a facility to save some data that can be recovered when power is restored. This might be
calibration data, user options, current state, etc.

This can be done with the VAR SAVE command which will save the variables listed on its
command line in non volatile flash memory. A typical use is like this:

VAR SAVE ConfigX, ConfigY

On power up these variables can be restored with the VAR RESTORE command which will add all
the saved variables to the variable table of the running program. Normally this command is placed
near the start of a program so that the variables are ready for use by the program.

This short program provides an example, it is not very practical but it does illustrate how the VAR
SAVE feature can be used:

VAR RESTORE
IF Config1 = 0 AND Config2 = 0 THEN
 INPUT "Config data 1", Config1
 INPUT "Config data 2", Config2
 VAR SAVE Config1, Config2
ELSE
 PRINT "Restored configuration data"
ENDIF
…

The VAR RESTORE command at the start of the program will try to restore any (and all) saved
variables. If none have been saved the command will do nothing.

The program will then check if the variables Config1 or Config2 are set to a non zero number
indicating that they have been previously set and saved via VAR SAVE (and therefore the VAR
RESTORE command found them and restored them).
If Config1 or Config2 are both zero the program will then get the settings from the user and save
them for the next restart.
Note that the very first time that the program is run there will be nothing to restore (because nothing
has been saved) but that does not matter, the command will not generate an error.

53

Communications Protocols

n outstanding feature of the Micromite is the range of communications protocols that it
supports. These are integrated into the BASIC language and are easy to use so you can
conveniently transfer data back and forth with test equipment, other ICs or sensors.

The list of communications protocols covers asynchronous serial (TTL, RS232 or RS485), I2C, SPI
and 1-wire. Serial is used to communicate with test equipment and GPS modules, I2C and SPI are
mostly used to talk to other chips or sensors and 1-wire is a speciality protocol for certain types of
sensors. This tutorial cannot cover each protocol in detail but it will provide enough information
for you to understand how they work. You can then refer to the Micromite User Manual for the full
details.

Asynchronous Serial Communications
There are many types of serial communications but in this context we will cover what is known as
asynchronous serial communications. This is where the data is sent as a series of pulses on the
signal line with precise timing, the receiver also uses the same timing so it can tell where in the data
stream a bit of data should (or should not) be. Other forms of serial communications (notably SPI)
have a separate clock signal which the receiver can use to determine when it should be receiving a
bit of data.
For a more detailed description see: https://learn.sparkfun.com/tutorials/serial-communication

The Micromite has two serial ports, one can operate up to 282,000 baud while the second will work
up to 19,200 baud. The first port is particularly flexible and can use TTL signalling levels (ie, 0 to
3.3V) or work with devices that use RS232 levels (±12V). It can also drive RS485 circuits and
generate the required EN signal.

TTL signalling levels means that the voltage range of the signal matches the levels used by TTL
logic (ie, logic low is zero volts and logic high is 3.3V). These signal levels allow you to directly
connect to devices like GPS modules (which generally use TTL voltage levels).
RS232 is slightly different in that the signal is inverted and swings from -12V to +12V. In the past
an RS232 port was standard on desktop computers but in recent years it is rarely used except in
some test equipment.

To open a serial port you use the command:
OPEN "COMx:" as #n

Where COMx can be COM1 for the first serial port or COM2 for the second. #n is the reference
number of the serial channel and can be any number between #1 and #10.

The speed of transmission in asynchronous serial is labelled 'baud' which is another way of saying
bits per second (this has nothing to do with bawdy houses. It is an honorific associated with Emile

Chapter

6
A

https://learn.sparkfun.com/tutorials/serial-communication

54

Baudot, a French engineer who invented the Baudot teletype code). The Micromite serial ports
default to 9600 baud but you can change this by appending the required speed to the end of the
COM port specification when you open the port. For example this will open the second serial port
at 1200 baud and assign it the reference number #4:

OPEN "COM2:1200" as #4

To send something out of the serial port you use the PRINT command. For example:
PRINT #4, "Hello"

This will send a series of characters spelling “Hello” out of the serial port opened as #4. To receive
characters from a serial port you can use a number of commands or functions but the most common
is the INPUT$(x, #n) function which will retrieve x characters from the port opened as #n.
There are a number of commands and functions in MMBasic that will accept a serial port reference
number and these include:

PRINT Send a string
INPUT() Receive one or more characters
LINE INPUT Receive a complete line
EOF() True if no characters are waiting in the receive buffer
LOF() The empty space (in characters) remaining in the transmit buffer

All serial communications in the Micromite are buffered which means that MMBasic will copy any
incoming characters to a part of memory (the buffer) where they can be retrieved later. The
advantage of buffering is that instead of waiting for characters to arrive your BASIC program can
be doing something useful and just check from time to time to see if anything has arrived. The
output is also buffered so that when you send some characters they are sent in the background and
your program can continue with something else such as checking sensor inputs.

As a practical example, many common wireless modules
use asynchronous serial communications and a low cost
example from Seeed Studio is shown on the right. This
defaults to a speed of 9600 baud and anything sent to the
transmitting module will be received by the receiving
module at the same speed.

For example, if you wished to measure a temperature with
one Micromite and transmit that wirelessly to a second,
your program on the sending Micromite might look like
this:

OPEN "COM1:9600" as #1
DO
 PRINT #1, TEMPR(24)
 PAUSE 1000
LOOP

Note that the TEMPR() function will read the temperature from a DS18B20 temperature sensor.

On the receiving Micromite the program could be:
OPEN "COM1:9600" as #1
DO
 LINE INPUT #1, T$
 PRINT T$
LOOP

55

Note that the LINE INPUT command will read characters from the input until a line termination
(carriage return and/or line feed) character is received. It will then copy the line as a string into the
specified variable.

Another typical use for a serial port is interfacing with low cost GPS modules. It only requires a
few lines of BASIC to get your current speed, location and time from such a module with incredible
accuracy.

I2C Communications
Most sensors use either the I2C or SPI protocols to communicate their results and the Micromite
will work with either. Typical sensors include acceleration, compass, electronic gyroscopes,
temperature, humidity, pressure, light intensity and dozens more.

The I2C protocol is quite complicated but using it on the Micromite is straightforward. First you
open the I2C channel using the I2C OPEN command, which allows you to specify the speed (up to
400KHz) and other details such as the timeout. The syntax is:

I2C OPEN speed, timeout

'speed' is the transmission speed in KHz (normally 100) and 'timeout' is the length of time to wait
(in ms) before deciding that the remote device is disconnected.

With the port open you are the I2C master and you can send data using the I2C WRITE command
and receive the response using the I2C READ command. Ie:

I2C WRITE addr, option, len, data

and
I2C READ addr, option, len, data

Each I2C device has an address which allows multiple devices to share the one communications
channel. 'addr' is the address, 'option' is a specialised setting which is normally set to zero, 'len' is
the amount of data to send or receive and 'data' is a variable or constant when sending data or a
variable where the received data is to be saved.

As an example, the following program will read and display the current time (hours and minutes)
maintained by a PCF8563 real time clock chip:

DIM AS INTEGER RData(2) ' this will hold received data
I2C OPEN 100, 1000 ' open the I2C channel
I2C WRITE &H51, 0, 1, 3 ' set the first register to 3
I2C READ &H51, 0, 2, RData() ' read two registers
I2C CLOSE ' close the I2C channel
PRINT "Time is " RData(1) ":" RData(0)

The hours and minutes maintained by the PCF8563 is held in two consecutive registers which we
need to read (check the PCF8563 data sheet for the details). Firstly the program defines an array to
hold the received data. We then open the I2C channel and write the number of the first register that
we want to read to the chip. The fourth line reads two bytes from the chip (minutes and seconds)
and saves them in the previously defined array, RData().

The PCF8563 real time clock is hardwired to recognise the address 51 (hex) on the I2C bus and that
is specified in both the I2C WRITE and READ commands as &H51. The prefix &H indicates to
MMBasic that the number is expressed in the hexadecimal notation.

The Micromite can also operate as a slave device. This means that you can program the Micromite
chip to act as an intelligent slave to communicate results to another microcontroller. Acting as a

56

slave also allows a Micromite to act as an expansion device for another Micromite – the Micromite
User Manual provides an example of how to do this.
For more details on I2C see: http://learn.sparkfun.com/tutorials/i2c

SPI Communications
The SPI protocol is simpler than I2C and is also used by many sensors. The Micromite can drive
the SPI interface at up to 10MHz and has commands for sending and receiving bulk high speed data
as well as managing the transfer on a byte by byte basic.
SPI can be configured in many ways and different manufacturers interpret the protocol in different
ways so reading through the data sheet for a device is important. This tutorial by SparkFun also
provides a good overview of the protocol: http://learn.sparkfun.com/tutorials/serial-peripheral-
interface-spi
Like the other communications protocols supported by the Micromite an SPI channel must be first
opened then written to and read from as required.
The syntax for opening the SPI channel is:

SPI OPEN speed, mode, bits

Where 'speed’ is the speed of the transmission, 'mode' is the transmission mode and 'bits' is the
number of bits to send/receive. The SPI protocol will receive data while it is sending something,
for this reason the one function (SPI()) does both the sending and receiving. For example:

 rdata = SPI(sdata)

will receive an SPI communication from the slave device and store the data in the variable rdata
while at the same time send the byte in the variable sdata. This notion of receiving while sending
can be confusing at first and this is another reason to carefully check the device's data sheet to see
how the manufacturer implemented the send/receive function.

For high speed transfers the Micromite allows you to send and receive bulk data using the SPI
READ and SPI WRITE commands. Finally an SPI channel is closed with the SPI CLOSE
command.

1-Wire Communications
The 1-Wire protocol was developed by Dallas Semiconductor and is used to communicate with
chips using a single signalling line. It is mostly used to communicate with the DS18B20
temperature measuring sensor and MMBasic includes the TEMPR() function which provides a
convenient method of directly reading that device (using the 1-wire protocol) without having to
understand the complications of using the protocol itself.

If you wish to delve into the details of 1-wire communications you should refer to the Micromite
User Manual and on line resources such as: http://en.wikipedia.org/wiki/1-Wire

http://learn.sparkfun.com/tutorials/i2c
http://learn.sparkfun.com/tutorials/serial-peripheral-
http://en.wikipedia.org/wiki/1-Wire

57

Basic Graphics

feature of the Micromite that sets it apart from other microcontrollers is its support for an
attached touch sensitive LCD panel. The 28 and 44-pin Micromites support LCD panels
based on the ILI9341controller and these can be purchased on eBay for under $10.

These panels come in a number of sizes ranging from 2.2" (diagonal measurement) to 2.8" and have
a resolution of 240 x 320 pixels with each pixel being able to display any one of 17 thousand
colours. The Micromite Plus (the 64 and 100-pin chips) will support a much larger range covering
panels from a tiny 1.8 inches to a very large 8" with the larger displays offering 800 x 600 pixels
with each pixel capable of displaying true 24-bit colour.

Nothing extra is required to drive these LCD panels and for this minimal cost you can design a
sophisticated project with colourful touch sensitive buttons and check boxes for the user input.

As an example, the photo on the right shows
the 28-pin Micromite driving a digital
synthesised function generator chip to make a
full featured signal generator.

There is nothing special here, the program is
written in standard MMBasic and you can
easily create a similar project yourself.
Details of this project can be found at
http://geoffg.net/SigGenerator.html

Suitable Display
The rest of this chapter assumes that you are using a 28-pin
Micromite connected to an LCD panel using the ILI1963 controller.
The Micromite User Manual goes into the detail of sourcing and
connecting this display so the following is a summary.
You will find hundreds of these displays on eBay by searching for
the keyword "ILI9341". The display that you purchase must look
like that illustrated on the right. There are many variations for sale
but the Micromite has been tested with the illustrated panel so you
can be sure that it will work.

Displays' using the ILI9341 controller come in three sizes (2.2, 2.4 and 2.8 inch
diagonal measurement) and you can use whatever size that you want although
you should be aware that most 2.2 inch displays to not include the touch
sensitive screen feature.

Chapter

7
A

http://geoffg.net/SigGenerator.html

58

The display and Micromite can be connected together using a solderless breadboard. However,
using the Micromite LCD Backpack project (http://geoffg.net/backpack.html) it is easy to build a
project using an LCD display panel as this includes the printed circuit board, power supply, etc.

Connecting a Display
The LCD panel uses the
SPI protocol to
communicate with the
Micromite plus few other
signals which can be
allocated within MMBasic
to different I/O pins as
required.

This gives the designer a lot
of flexibility but, for the
sake of simplicity, the
following tutorial will
assume that you are using
the Micromite LCD
Backpack, or at least the
same connections to the
panel as shown in this
diagram.

Configuring the Micromite
Before you can use the LCD panel you need to configure the Micromite for the LCD display panel.
These commands setup the hardware features of the Micromite for the display and are saved in non
volatile flash memory. This means that they only need to be run once; from then on the display will
be automatically setup on power up.

All the following commands assume that you are using the Micromite LCD Backpack with the
connections illustrated above.

The first step is to tell the Micromite that a display is connected and what I/O pins are used for
critical signals. To do this type the following line at the command prompt and hit the enter key:

OPTION LCDPANEL ILI9341, L, 2, 23, 6

This tells the Micromite that the LCD panel is connected and the I/O pins used for the reset, RW
and device select signals Following this command the Micromite will initialise the display (which
should go dark) and return to the command prompt.

You can test the display by entering the following at the command
prompt:

GUI TEST LCDPANEL

This will cause the Micromite to draw a series of rapidly
overlapping coloured circles on the display (as shown on the right).
This animated test will continue until you press a key on the
console's keyboard and MMBasic will then return to the command
prompt.

47µF
25V

28 1320
Vcap AVdd

28-pin Micromite

3.3V

Vdd

VssAVss

27 8 19

10uF

T_IRQ
T_DO
T_DIN
T_CS
T_CLK
SDO (MISO)
LED
SCK
SDI (MOSI)
D/C
RESET
CS
GND
VCC

15

7

14

25
3
2
23
6

Tx
Rx

GND

11
12

ILI9341 Based
LCD Display

Console

100O Trimpot
LCD Brightness

5V

http://geoffg.net/backpack.html)

59

To configure the touch feature you should enter the following at the command prompt:
OPTION TOUCH 7, 15

This allocates the I/O pins for the touch controller interrupt and device select signals. Before you
can use the touch facility you need to calibrate it and this is done with the following command:

GUI CALIBRATE

This will cause MMBasic to draw a target at the top left hand
corner of the screen. Using a pointy but blunt object press on
the exact centre of the target. After a second the target will
disappear and when you lift your touch another target will
appear on the top right.
In this fashion the target will be displayed on all four corners of
the display and the touch feature will be calibrated for the
display. At the end the message "Done. No errors" should be
displayed on the console. You also might get a message indicating that the calibration was
inaccurate and in that case you should repeat it taking more care to accurately touch the target.

You can now test the touch facility with the command:
GUI TEST TOUCH

This will clear the screen and when you touch it pixels will be illuminated at the touch point (as
shown on the right). This enables you to test the accuracy of the calibration – using a stylus touch
the screen and the pixels under the touch point should light. Pressing any key will terminate the
test.

Graphic Coordinates
All operations on the LCD screen are done in terms of pixels and the standard ILI9341 based panels
have a resolution of 240 pixels vertically by 320 pixels horizontally. Pixel coordinates are specified
by an X (horizontal) coordinate and a Y (vertical) coordinate.

The top left corner of the screen has the coordinates of X = 0 and Y = 0 and as you move to the right
the X coordinate will increase and as you move down the screen the Y coordinate will increase.
Accordingly X = 319 and Y = 239 are the coordinates of the bottom right corner of the screen.
The PIXEL command will set the colour of an individual pixel so:

PIXEL 0, 0, RGB(red)

Will set the top left pixel to red and the following will set the pixel in the middle of the screen to blue
(we will discuss colours next):

PIXEL 160, 120, RGB(blue)

Defining Colour
All colours in MMBasic are specified as a 24-bit number (the same as your desktop PC). The top
eight bits is the intensity of the red colour, the middle eight bits the green colour and the bottom eight
bits the blue colour. Each eight bit number can range from zero to 255 (decimal).
For example, yellow is produced when the red and green colours are at full intensity and blue is off.
If you work out the result using binary arithmetic you will get the number 16776960. Using the
PIXEL command we can change the pixel at the centre of the screen to yellow with the command:

PIXEL 160, 120, 16776960

60

Defining colours this way is rather clumsy so MMBasic makes it easy for you with the RGB()
function. This has the form RGB(red, green, blue) where red is a number between zero and 255 and
similar for green and blue. So you could rewrite the command to turn on the pixel with the yellow
colour like thus:

PIXEL 160, 120, RGB(255, 255, 0)

To make it even more convenient for you to specify a colour the RGB() function will allow you to
directly name the colour, so you could also turn the pixel yellow using just this:

PIXEL 160, 120, RGB(yellow)

The colours that you can specify this way are red, green, blue, yellow, cyan, purple, white and black.
The 24-bit value used to specify a colour has over 64 million variations however many panels can
only display less than this number of colours. This need not concern you as MMBasic will
automatically convert the 24-bit colour value to the colour range supported by the display. The more
advanced Micromite Plus can drive many more displays with some natively supporting 24-bit colour
and it will also automatically adjust the colour to suit them if needed.
Finally, if you want to store a colour number in a variable make sure that the variable is an integer. A
floating point number cannot accurately store a 24-bit number so some of the data will be lost if you
tried to do that. So always use integers for storing colour values. For example:

PixColour% = RGB(yellow)
PIXEL 160, 120, PixColour%

Drawing on the Screen
There are eight basic drawing commands that you can use. These are:
 CLS C

Clears the screen to the colour C. If C is omitted the current background colour will be used.

 PIXEL X, Y, C
Sets the colour of a pixel. If C is omitted the current foreground colour will be used.

 LINE X1, Y1, X2, Y2, LW, C
Draws a line starting at the coordinates of X1 and Y1 and ending at X2 and Y2. LW is the
line’s width which defaults to one if not specified and C is the colour which defaults to the
current foreground colour. The line width only applies to horizontal or vertical lines. Diagonal
lines will always have a line width of one.

 BOX X1, Y1, W, H, LW, C, FILL
Draws a box starting at X1 and Y1 which is W pixels wide and H pixels high. LW is the width
of the sides of the box (defaults to one), C is the colour (defaults to the foreground colour) and
FILL is the colour to fill the box and this defaults to-1 which means no fill (ie, the pixels inside
the box are undisturbed).

 RBOX X1, Y1, W, H, R, C, FILL
Draws a box with rounded corners starting at X1 and Y1 which is W pixels wide and H pixels
high. R is the radius of the corners of the box (defaults to 10) and the remaining parameters are
the same as for the BOX command.

 CIRCLE X, Y, R, LW, A, C, FILL
Draws a circle with X and Y as the centre and a radius R. LW is the width of the line used for
the circumference (defaults to one). A is the aspect ratio (defaults to one which specifies a
perfect circle). The remaining parameters are the same as for the BOX command.

61

 TEXT X, Y, STRING, JUSTIFICATION, FONT, SCALE, C, BC
Displays a string starting at X and Y. JUSTIFICATION is one or two letters where the first
letter is the horizontal justification around X and can be L, C or R for LEFT, CENTER, RIGHT
and the second letter is the vertical placement around Y and can be T, M or B for TOP,
MIDDLE, BOTTOM. FONT and SCALE specify the font and scale. C is the drawing colour
and BC is the background colour.

 GUI BITMAP X, Y, BITS, WIDTH, HEIGHT, SCALE, C, BC
Displays the bits in a bitmap starting at X and Y. HEIGHT and WIDTH are the dimensions of
the bitmap, SCALE, C and BC are the same as for the TEXT command.

Examples
If you wanted to draw a diagonal line across the screen you could do it by repeatedly using the PIXEL
command to draw the line pixel by pixel:

CLS
FOR i = 0 TO 239
 PIXEL (i * 320) / 240, i, RGB(white)
NEXT i

However it is simpler to use the LINE command:
CLS
LINE 0, 0, 239, 319, 1, RGB(white)

There are other commands that make it easy to draw common graphic elements. For example, you
can draw a box using the BOX command:

BOX 100, 120, 70, 30, 2, RGB(red)

This will draw a box with the top left corner positioned at X = 100 and Y = 120. The width of the box
is 70 pixels and the height 30 pixels. The width of the lines used to draw the box is 2 pixels and they
are drawn using the red colour.
You could, if you wished, fill the box with some colour. For example, the following will draw the
same box but this time filled with blue:

BOX 100, 120, 70, 30, 2, RGB(red), RGB(blue)

The RBOX command is similar but it will draw the box with rounded corners. The following shows
how to draw a box similar as the above example but with round corners:

BOX 100, 120, 70, 30, 10, RGB(red), RGB(blue)

The fifth parameter is the radius of the rounded corner and in this case it is 10 pixels. Note that you
cannot define the thickness of the walls using this command so they default to a width on one pixel.

Rounded boxes are useful for drawing on-screen buttons as we will demonstrate later.
The CIRCLE command, as its name suggests, will draw a circle.

CIRCLE X, Y, R, LW, A, C, FILL

X and Y are the coordinates of the centre of the circle, R is the radius (in pixels), A is the aspect ratio,
C is the colour and FILL (which is optional) is the colour to fill the circle.
The aspect ratio (A in the commands parameter list) is a decimal number which can be a fraction - if it
is exactly 1 the circle will be perfectly circular, if it is less or more than 1 the graphic drawn will be an
oval with either the horizontal or vertical axis stretched.

62

For example:
CLS
Circle 160, 120, 45, 3, 1, RGB(red), RGB(yellow)
Circle 160, 120, 100, 1, 0.5, RGB(blue)
Circle 160, 120, 50, 1, 1.8, RGB(green)

This will draw a circle and two ovals. The first will be drawn in red with a
border three pixels wide and filled with yellow. The next is a blue oval
followed by a green oval, each oval drawn with a different aspect ratio.
This photo shows the result.

TEXT Command
The TEXT command is the most useful of the graphics commands. It allows you do display text
anywhere on the LCD screen using different fonts and in any colour.
This is the command and its parameters:

TEXT x, y, string, justification, font, scale, colour, back-colour

'x' and 'y' are the coordinates (in pixels) of where the text is to be positioned and 'string' is the text
(ie, string) that you want to display.
The justification consists of none, one or two letters. The first can be L, C or R. These specify that
the text should be horizontally positioned to the left, centre or right of the 'x' coordinate. The
second letter is the vertical placement around the 'y' coordinate and can be T, M or B for top, middle
or bottom.
'font' is the font number that should be used (the Micromite can have up to 16 fonts installed) and
'scale' is the magnification (1 is the normal font, 2 is doubled in height and width, 3 is tripled, etc).
'colour' is the colour of the text and 'back-colour' is the background colour for the text.

Most parameters are optional so, for example, you can just use the following to print the word
"Micromite" near the top left of the screen.

TEXT 10, 10, "Micromite"

The justification defaulted to left-top, the font defaulted to font #1, the scale to 1, the colour to
white and the background to black.

The justification parameter is particularly useful as it allows you to position the text much easier.
For example to perfectly centre the text on a 320x240 pixel screen you can use:

TEXT 160, 120, "Centred", CM

'C' (for centre) specifies that the text be centred horizontally around the X axis and 'M' (for middle)
will position the middle of the text vertically around the Y axis. You could calculate the centred
position for the text yourself using the font's height and width but using the justification parameters
is a lot simpler.
As another example the following will print the word "Hello"
in all four corners of the screen using font 1 doubled in size
as illustrated on the right.

TEXT 0, 0, "Hello", , 1, 2
TEXT 320, 0, "Hello", R, 1, 2
TEXT 0, 240, "Hello", B, 1, 2
TEXT 320, 240, "Hello", RB, 1, 2

63

The TEXT command will only display text, so if you want to display a number (integer or float)
you most convert it to a string using the STR$() function. For example, the following will display
54.7 in the centre of the screen:

depth = 54.7
TEXT 160, 120, STR$(depth), CM

You can always join strings together using the plus character (+) and this is handy when you want
to build a string for the TEXT command. For example:

depth = 54.7
TEXT 160, 120, "Depth: " + STR$(depth) + " meters", CM

Fonts
The 28 and 44-pin Micromites include one built in font which is 8 pixels wide by 13 pixels high and
includes all 95 standard ASCII characters with the back quote character (60 hex or 96 decimal)
replaced with the degree symbol (º). Within MMBasic this is referred to as font #1.

The 64 and 100-pin Micromite Plus includes six fonts numbered #1 to #6. The first font (#1) is the
same as above but the others provide larger and clearer fonts.

If required, additional fonts can be embedded in a BASIC program. The MMBasic distribution (ie,
zip file) includes over a dozen embedded fonts covering a wide range of character sets and includes
symbol fonts (Dingbats) which are handy for creating on screen icons, etc. These fonts work exactly
same as the built in fonts (ie, selected using the FONT command or specified in the TEXT command).

Each embedded font looks like this (this is an example, not a working font):
DefineFont #8
 0B303220 00000000 00000000 00F00F00 00F81F00 00FE7F00 00FFFF00 00FFFF01
 801FF803 C00FF003 C007E007 E003C007 E003C00F F001800F F001800F F001801F
 00F80300 00F80300 00F80300 00F00100 00E00000 00000000 00000000 00000000
End DefineFont

The keyword DefineFont signals the beginning of the font and it is followed by a number which is
the font number that can be used in commands like TEXT that use a font number. The font definition
is terminated by the keywords End DefineFont. In-between the two are a series of eight digit
hex numbers which define the bit image of the characters in the font. The font definition can be
placed anywhere in your program and if MMBasic runs into it during execution of the program it will
skip over it.

Embedded fonts can be very large so you are limited in the number of these that you can embed in a
program. One way of overcoming this difficulty is to copy the fonts into the library area of the
Micromite where they are compressed and take up less space. This is described fully in the Micromite
User Manual.

The default font used by MMBasic is font #1 however that can be changed with the FONT command:
FONT font-number, scaling

Where 'font-number' is a number which can be optionally preceded by a hash (#) character. 'scaling'
is optional and is a number in the range of 1 to 15. The font will be multiplied by the scaling factor
making the displayed character correspondingly wider and taller. For example, specifying a 'scaling'
of 2 will double the height and width. If not specified the scaling factor will be 1 (ie, no scaling). The
font and scaling can also be specified in the TEXT command but setting the default using the FONT
command is useful when you will be using a consistent font in the program.

64

Touch Input
The ILI9341 based displays used with the 28 and 44-pin Micromites are generally supplied with a
resistive touch sensitive panel and associated controller chip which is fully supported in MMBasic.
To detect if and where the screen is touched you can use the following functions in a BASIC program:

TOUCH(X) Returns the X coordinate of the currently touched location.
TOUCH(Y) Returns the Y coordinate of the currently touched location.

All coordinates and measurements on the screen are done in terms of pixels with the X coordinate
being the horizontal position and Y the vertical position.

If the screen is not touched both will return -1.
As a simple demonstration the following program will display in the centre of the LCD panel two
numbers representing the X and Y coordinates of the current touched point.

CLS
DO
 TEXT 120, 120, STR$(TOUCH(X),3) + " " + STR$(TOUCH(Y),3)
LOOP

The touch controller on the LCD display panel will signal when the screen has been touched by
pulling the IRQ signal line low and this can be used to generate an MMBasic interrupt. The IRQ
pin is defined when you originally configured the touch feature; it is the last parameter as shown in
bold in the following command line:

OPTION TOUCH 7, 15

You can setup an interrupt as follows:
SETPIN 15, INTL, MyTouchInt

Then, whenever the screen is touched, the touch controller on the LCD panel will pull pin 15 low
and MMBasic will interrupt the current program flow to call the subroutine MyTouchInt.

The following small program demonstrates how this can be used. Every time the screen is touched
the program will draw a small cross at the location of the touch. This is done entirely in the
interrupt subroutine, the main program is just running an empty loop but it could be doing
something useful.

CLS
SETPIN 15, INTL, DrawCross ' pin 15 is the touch IRQ
DO
 ' < program can be doing something useful >
LOOP

SUB DrawCross
 CLS
 LOCAL x = TOUCH(X)
 LOCAL y = TOUCH(Y)
 LINE x – 10, y - 10, x + 10, y + 10
 LINE x – 10, y + 10, x + 10, y - 10
END SUB

65

Drawing Buttons
When you use the touch screen as the input method for your
gadget you will inevitable need some on screen buttons as
shown in the example on the right.

It easy to create a small number of them (just use a box with
rounded corners) but it is trickier when you have a screen full
of buttons and your program needs to tell when they have
been touched while doing other things.

There are many ways to implement this however in the
remainder of this chapter we will describe one way which is
similar to that used in the Boat Computer (http://geoffg.net/BoatComputer2.html) illustrated in the
above screen shot. First we need a subroutine to draw a button:

SUB DrawBtn x, y, w, h, fc AS INTEGER, bc AS INTEGER, s AS STRING
 RBOX x, y, w, h, , fc, bc
 TEXT x + w/2, y + h/2, s, CM, , , fc, bc
END SUB

This takes six arguments (the X and Y coordinates, the width, height, the foreground colour (fc), the
background colour (bc), and the caption on the button (s). Note that the colours are specified as
integers and the caption as a string.

You would call this subroutine like this:
DrawBtn 100, 120, 70, 25, RGB(cyan), RGB(black), "RUN"

Note that the appearance of the caption depends on the default font and scaling being previously set
using the FONT command.

When you have a lot of buttons to draw and maintain it is easier if their parameters (position, size,
etc) are stored in arrays where you can step through them using FOR loops, etc. So we need to
define arrays for all our buttons:

CONST NbrBtn = 20
DIM FLOAT bx(NbrBtn), by(NbrBtn), bw(NbrBtn), bh(NbrBtn)
DIM INTEGER bfc(NbrBtn), bbc(NbrBtn)
DIM STRING bs(NbrBtn)

By defining the number of buttons as a constant in the first line it makes it simple to change the
number as the program changes.

To make it easier when dealing with a lot of buttons it would be useful to have a subroutine that will
load the parameters into these arrays and, at the same time, draw the button on our screen:

SUB InitBtn n, x, y, w, h, fc AS INTEGER, bc AS INTEGER, s AS STRING
 bx(n) = x : by(n) = y : bw(n) = w : bh(n) = h
 bfc(n) = fc : bbc(n) = bc : bs(n) = s
 DrawBtn x, y, w, h, fc, bc, s
END SUB

The first parameter (n) is the reference number of the button and is the index into the array where
the button information will be stored. As an example, to setup and draw the buttons used in the
boat computer example screen shown on the previous page you would run the following code:

InitBtn 0, 204, 0, 116, 28, RGB(cyan), RGB(black), "CHANGE"
InitBtn 1, 204, 62, 116, 28, RGB(cyan) , RGB(black), "CHANGE"
InitBtn 2, 204, 124, 116, 28, RGB(cyan) , RGB(black), "CHANGE"
InitBtn 3, 0, 206, 195, 36, RGB(red) , RGB(black), "SET TO HERE"
InitBtn 4, 207, 206, 112, 36, RGB(white) , RGB(black), "SAVE"

http://geoffg.net/BoatComputer2.html)

66

Now we need to detect if a button has been touched. This time we need to use a function as it will
be required to return a value (true if the button is touched, false otherwise):

FUNCTION CheckBtnDown(n)
 LOCAL x = TOUCH(x), y = TOUCH(y)
 IF x > bx(n) AND x < bx(n)+bw(n) AND y > by(n) AND y < by(n)+bh(n) THEN
 DrawBtn bx(n), by(n), bw(n), bh(n), bbc(n), bfc(n), bs(n)
 CheckBtnDown = 1
 ENDIF
END FUNCTION

This will check if the touch is within the boundaries of the button and if so, draws the button in
reverse video to acknowledge the touch. It also sets the value of the function to 1 (ie, true).

Note that we store the x and y coordinates of the touch in local variables (x and y) as that makes the
following code less cluttered. If the screen is not touched x and y will be set to -1 which is outside
the area of all buttons so the function will always return false in this case. Finally we do not bother
to set the value of the function to zero (false) if the check failed because that is the default value for
a function anyway.
We also need a subroutine to check if the touch has been lifted and wait for that event before
redrawing the button in its normal (untouched) form:

SUB WaitBtnUp(n)
 DO WHILE TOUCH(x) <> -1 : LOOP
 DrawBtn bx(n), by(n), bw(n), bh(n), bfc(n), bbc(n), bs(n)
END SUB

Used together both this function and subroutine make it easy to detect and respond to a button press.
For example, the following program fragment will check if button 3 is being touched and, if it is, do
whatever is required. The program will then wait for the touch to be lifted before continuing:

IF CheckBtnDown(3) THEN
 ' < do whatever button 3 needed done>
 WaitBtnUp(3)
ENDIF

Most embedded control programs run in a loop checking for inputs and responding accordingly and
this code could be placed in that loop. This would ensure that the buttons are regularly checked for
touch and acted upon immediately. If you did not want to embed the check in the loop, or you did
not want your program to wait for the removal of touch you could use the touch interrupt (described
earlier) to trigger a call to one subroutine on both touch up and down. Within this subroutine you
could set global flags to indicate what action was required (for example, respond to button 3).
If you want to try this program on your own Micromite the following is the full listing of the
program. You should be able to copy from this PDF to your clipboard.

CONST NbrBtn = 5
DIM FLOAT bx(NbrBtn), by(NbrBtn), bw(NbrBtn), bh(NbrBtn)
DIM INTEGER bfc(NbrBtn), bbc(NbrBtn)
DIM STRING bs(NbrBtn)

CLS
FONT 1, 2

InitBtn 0, 204, 0, 116, 28, RGB(cyan), RGB(black), "CHANGE"
InitBtn 1, 204, 62, 116, 28, RGB(cyan) , RGB(black), "CHANGE"
InitBtn 2, 204, 124, 116, 28, RGB(cyan) , RGB(black), "CHANGE"
InitBtn 3, 0, 206, 195, 36, RGB(red) , RGB(black), "SET TO HERE"
InitBtn 4, 207, 206, 112, 36, RGB(white) , RGB(black), "SAVE"

67

DO
 IF CheckBtnDown(0) THEN
 ' < do whatever button 0 needed done>
 WaitBtnUp(0)
 ENDIF
 IF CheckBtnDown(1) THEN
 ' < do whatever button 1 needed done>
 WaitBtnUp(1)
 ENDIF
 IF CheckBtnDown(2) THEN
 ' < do whatever button 2 needed done>
 WaitBtnUp(2)
 ENDIF
 IF CheckBtnDown(3) THEN
 ' < do whatever button 3 needed done>
 WaitBtnUp(3)
 ENDIF
 IF CheckBtnDown(4) THEN
 ' < do whatever button 4 needed done>
 WaitBtnUp(4)
 ENDIF
LOOP

SUB DrawBtn x, y, w, h, fc AS INTEGER, bc AS INTEGER, s AS STRING
 RBOX x, y, w, h, , fc, bc
 TEXT x + w/2, y + h/2, s, CM, , , fc, bc
END SUB

SUB InitBtn n, x, y, w, h, fc AS INTEGER, bc AS INTEGER, s AS STRING
 bx(n) = x : by(n) = y : bw(n) = w : bh(n) = h
 bfc(n) = fc : bbc(n) = bc : bs(n) = s
 DrawBtn x, y, w, h, fc, bc, s
END SUB

FUNCTION CheckBtnDown(n)
 LOCAL x = TOUCH(x), y = TOUCH(y)
 IF x > bx(n) AND x < bx(n)+bw(n) AND y > by(n) AND y < by(n)+bh(n) THEN
 DrawBtn bx(n), by(n), bw(n), bh(n), bbc(n), bfc(n), bs(n)
 CheckBtnDown = 1
 ENDIF
END FUNCTION

SUB WaitBtnUp(n)
 DO WHILE TOUCH(x) <> -1 : LOOP
 DrawBtn bx(n), by(n), bw(n), bh(n), bfc(n), bbc(n), bs(n)
END SUB

Numeric Key Pad
A more sophisticated usage of buttons is to draw an on-
screen keypad as illustrated on the right.
The program listing below is a full working demonstration of
how to implement such feature and you can copy the code
with minimal modifications direct into your program. It uses
the same functions defined above so the previous description
of how they work applies to this example also.

68

The program starts by declaring the arrays needed to hold the button's parameters. It then drops
into a simple loop where it gets a number from the user (via the on screen keypad) and displays it
on the console output. Your program will obviously do something more useful with this value.

All the work is done in the function KeyPadInput. It is called with one parameter which is the
prompt to display (in yellow) and it returns with the number entered when the user touched the
SAVE button.
Within the function KeyPadInput the keypad is drawn using a FOR loop which calculates the
location of each button as it executes the loop. Similarly the buttons are checked for touch by
another FOR loop which checks each button in turn.

You should be able to copy this program from this PDF to your clipboard and then send it to a
Micromite with an attached display and it will run "as is". If you are going to type the program in
yourself, be aware that the following line has been split in the listing:
InitBtn btn, bw/2 + bw * (btn Mod 3), bh + bh * (btn \ 3), bw - 4, bh - 4, RGB(cyan), RGB(black), SCap(btn)

CONST NbrBtn = 11
DIM FLOAT bx(NbrBtn), by(NbrBtn), bw(NbrBtn), bh(NbrBtn)
DIM INTEGER bfc(NbrBtn), bbc(NbrBtn)
DIM STRING bs(NbrBtn)

FONT 1, 2

DO
 ' repeatedly get a number from the on screen keypad
 ' and print on the console
 PRINT KeyPadInput("Freq (Hz)")
LOOP

' this displays a keypad for inputting a number
FUNCTION KeyPadInput(s$)
 LOCAL btn, nbr = 0
 LOCAL STRING SCap(9) = ("7","8","9","4","5","6","1","2","3","0")
 CONST bh = 48, bw = 80

 ' draw the top line with the prompt and current value (ie, 0)
 CLS
 TEXT 0, 10, s$, , 1, 2, RGB(yellow)
 TEXT 300, 9, STR$(nbr), R, 1, 2

 ' draw the main keypad buttons
 FOR btn = 0 TO 8
 InitBtn btn, bw/2 + bw * (btn Mod 3), bh + bh * (btn \ 3), bw - 4, bh - 4, RGB(cyan),
RGB(black), SCap(btn)
 NEXT btn

 ' draw the special buttons
 InitBtn btn, bw * 1.5, bh + bh * (btn \ 3), bw - 4, bh - 4, RGB(cyan), RGB(black), "0"
 InitBtn 10, 6, bh*4, 110, bh - 4, RGB(magenta), RGB(black), "DEL"
 InitBtn 11, 201, bh*4, 110, bh - 4, RGB(white), RGB(black), "SAVE"

 DO
 ' check if a button has been touched
 FOR btn = 0 TO 11
 IF CheckBtnDown(btn) THEN EXIT FOR
 NEXT btn

 ' action the button (btn > 11 means no button touched)
 SELECT CASE btn
 CASE 0 TO 9
 IF LEN(STR$(nbr)) < 6 THEN nbr = nbr * 10 + VAL(SCap(btn))
 CASE 10

69

 nbr = nbr \ 10
 CASE 11
 KeyPadInput = nbr
 CASE 12
 CONTINUE DO
 END SELECT
 TEXT 300, 9, " " + STR$(nbr), R, 1, 2
 PAUSE 150
 WaitBtnUp btn
 LOOP UNTIL btn = 11 ' exit the loop (and function) if DONE touched
END FUNCTION

SUB DrawBtn x, y, w, h, fc AS INTEGER, bc AS INTEGER, s AS STRING
 RBOX x, y, w, h, , fc, bc
 TEXT x + w/2, y + h/2, s, CM, , , fc, bc
END SUB

SUB InitBtn n, x, y, w, h, fc AS INTEGER, bc AS INTEGER, s AS STRING
 bx(n) = x : by(n) = y : bw(n) = w : bh(n) = h
 bfc(n) = fc : bbc(n) = bc : bs(n) = s
 DrawBtn x, y, w, h, fc, bc, s
END SUB

FUNCTION CheckBtnDown(n)
 LOCAL x = TOUCH(x), y = TOUCH(y)
 IF x > bx(n) AND x < bx(n)+bw(n) AND y > by(n) AND y < by(n)+bh(n) THEN
 DrawBtn bx(n), by(n), bw(n), bh(n), bbc(n), bfc(n), bs(n)
 CheckBtnDown = 1
 ENDIF
END FUNCTION

SUB WaitBtnUp(n)
 DO WHILE TOUCH(x) <> -1 : LOOP
 DrawBtn bx(n), by(n), bw(n), bh(n), bfc(n), bbc(n), bs(n)
END SUB

Example Programs
There are many requirements when it comes to drawing graphics and responding to touch and it is
handy to see how other programs tackle this task. There are four programs for the 28-pin
Micromite that were partly written to demonstrate graphics programming and it would be worth
looking through them for inspiration or as a source of handy subroutines and functions.

These are:
The Parking Assistant: http://geoffg.net/ParkingAssistant.html

The Boat Computer: http://geoffg.net/BoatComputer2.html
The Super Clock: http://geoffg.net/SuperClock.html

The DDS Signal Generator: http://geoffg.net/SignalGenerator.html

Micromite Plus
The Micromite Plus is an advanced form of the Micromite and it implements many on screen
graphical objects such as buttons, switches, numeric keypads, check boxes, and so on within the
BASIC language. Each can be drawn with a single BASIC command and from then on MMBasic
will manage the object for you. This includes responding to touch, redrawing the object to indicate
that it has been touched, etc. All the BASIC program needs to do is check the object's status – for
example, is the checkbox ticked or not, is the switch down or up?

http://geoffg.net/ParkingAssistant.html
http://geoffg.net/BoatComputer2.html
http://geoffg.net/SuperClock.html
http://geoffg.net/SignalGenerator.html

70

The Micromite Plus is more complicated to deal with than the standard 28-pin Micromite used in
this tutorial (for example, it comes only in surface mount packages) but it is worth considering if
you have an application that is primarily a controller and will have a lot of on-screen buttons,
switches, etc.
For more information on the Micromite Plus see: http://geoffg.net/MicromiteMX470.html

http://geoffg.net/MicromiteMX470.html

It is intended that this tutorial will be
extended in the future to provide more detail

and further programming examples.
Future versions will also cover some of the

more sophisticated features of the
Micromite.

To find the latest version go to:

http://geoffg.net/micromite.html#Downloads

http://geoffg.net/micromite.html#Downloads

