
The Micromite CFunction
The Micromite CFunction feature allows a BASIC program to load a machine code module into
MMBasic and execute the code in that module. Because the module is written in C or MIPS
assembler it can run much faster than a BASIC program and can more easily access the special
hardware features of the PIC32 microcontroller.
However it does require that the programmer has experience with programming in C or assembler
and has a good working knowledge of MPLAB X and programming for the PIC32. This guide
provides an outline of how to write a CFunction module but it does not explain how to write C
programs.

Writing a CFunction
A CFunction can accept up to ten arguments and returns a 64-bit integer. All arguments passed to
the CFunction are pointers to the memory allocated to a variable or the result of an expression.
They can be pointers to integers, strings or an array of integers or strings. Floating point cannot be
used.

There are a few points to note:
 The CFunction returns a value which is a 64-bit integer (a long long int in C).

 Because the arguments are pointers to the memory allocated to the variables in MMBasic your
C program can modify this memory and this is another way of returning data to MMBasic. If
you pass an expression the argument will be a pointer to the result of the expression (integer or
string) but changing it will not achieve anything.

 Integers are 64-bit signed numbers (called long long int in C) and occupy 8 bytes. Because the
MIPS processor is little endian the pointer actually contains the address of the least significant
byte. This means that you can declare the argument as a pointer to a short int (16-bits) or int
(32-bits) and it will still work as long as the contents of the variable do not exceed these sizes.

 Strings are passed as a pointer to the first byte of the memory allocated to a string (which
defaults to 256 bytes). In MMBasic the first byte is the length of the string (in characters) and
the 2nd and subsequent bytes are the characters in the string.

 Arrays are passed by using the array name with empty brackets (ie, with no dimensions). For
example: x = CFun(a%, b%(), c%). In the CFunction the argument will be a pointer to the
first element of the array.

A CFunction module has some important restrictions:

 It cannot call any library functions (eg, toupper(), strcmp(), etc) and it cannot do anything that
will cause the compiler to call a library function (eg, manipulate a float). Note that you can
call functions defined within the CFunction module.

 It cannot define data that is const (ie, data that will be stored in flash memory) or static (ie,
variables defined outside of a function). This means that you cannot use something like
"const int var" or "static int var" and you cannot create literal strings (ie, "foo").

 It is hard to debug CFunction modules and most programming errors will cause a MIPS
processor exception which in turn will instigate an immediate reboot of the Micromite.

Compiling a CFunction
It is strongly recommend that you read through the CFunction tutorial written by Peter Carnegie and
use his MMBasic CFunction Maker program to convert the output from the C compiler into an
MMBasic CFunction. This program adjusts for some non-position independent code that might be
generated by the compiler and formats the data correctly.
The program and tutorial can be downloaded from: http://www.g8jcf.dyndns.org/mmbasicii/

http://www.g8jcf.dyndns.org/mmbasicii/

The following is intended only for people who do not wish to use Peter's program or are interested
in the mechanics of how a CFunction module is created.
The module should be compiled using the Microchip MPLAB X and XC32 compiler (both
available for free from http://microchip.com). It must be compiled using the options:

 -fPIC –mno-abicalls.

After a successful compile the disassembled output of the program can be displayed by selecting
Window Output Disassembly Listing File within MPLAB X

The listing below shows a typical disassembled output:

Disassembly Listing for CFunctionTest
Generated From:
T:/MMBasic_Plugin.X.production.elf
12/09/2014 9:30:23 PM

--- t:/mmbasic_plugin.x/main.c -------------------------------------
17: long long int main(long long int *a, long long int *b) {
9D0020DC 27BDFFF8 ADDIU SP, SP, -8
9D0020E0 AFBE0004 SW S8, 4(SP)
9D0020E4 03A0F021 ADDU S8, SP, ZERO
9D0020E8 AFC40008 SW A0, 8(S8)
9D0020EC AFC5000C SW A1, 12(S8)
18: return *a + *b;
9D0020F0 8FC20008 LW V0, 8(S8)
9D0020F4 8C440000 LW A0, 0(V0)
9D0020F8 8C450004 LW A1, 4(V0)
9D0020FC 8FC2000C LW V0, 12(S8)
9D002100 8C460000 LW A2, 0(V0)
9D002104 8C470004 LW A3, 4(V0)
9D002108 00861021 ADDU V0, A0, A2
9D00210C 0044402B SLTU T0, V0, A0
9D002110 00A71821 ADDU V1, A1, A3
9D002114 01032021 ADDU A0, T0, V1
9D002118 00801821 ADDU V1, A0, ZERO
19: }
9D00211C 03C0E821 ADDU SP, S8, ZERO
9D002120 8FBE0004 LW S8, 4(SP)
9D002124 27BD0008 ADDIU SP, SP, 8
9D002128 03E00008 JR RA
9D00212C 00000000 NOP

The machine code for the CFunction is shown highlighted in yellow. Each group of eight hex digits
represents one 32 bit word and each must be copied into the BASIC program.

Defining the CFunction in MMBasic

The machine code is inserted into the BASIC program as a sequence of 8-digit hex words between
CFUNCTION and END CFUNCTION commands. Each word must be separated by one or more
spaces or a new line and consists of eight hex digits representing the bits in a single 32-bit word.

The first word of the CFunction data must be the offset (in 32 bit words) to the entry point for the
program from the start of the program. In the above case this is zero but when multiple functions
are used smaller functions may be placed by the linker before the main program and this is how
MMBasic can find the main entry point.

http://microchip.com).

When a BASIC program is saved to flash MMBasic will search through it looking for any
CFUNCTION commands. The machine code specified will then be extracted and programmed into
flash memory. This code becomes part of MMBasic and will be called whenever the specified
CFunction name is encountered (it is erased when a new program is saved).

Multiple CFUNCTION commands can be used if multiple CFunction modules are required. During
execution MMBasic will skip over the CFUNCTION and END CFUNCTION commands and the
data specified. This means they can be placed anywhere in the program.

The following shows a CFunction module built from the disassembly listing shown on the previous
page (the highlighted data):

CFunction TestCFunct
 00000000
 27BDFFF8 AFBE0004 03A0F021 AFC40008 AFC5000C 8FC20008 8C440000
 8C450004 8FC2000C 8C460000 8C470004 00861021 0044402B 00A71821
 01032021 00801821 03C0E821 8FBE0004 27BD0008 03E00008 00000000
End CFunction

Note that the first word is the offset to the entry point to the CFunction and is not part of the
disassembled output. It is zero in this case because we are only using one function and it is first in
the module.
To call the CFunction in your BASIC program you use the CFunction name (specified after the
CFunction command) in an expression. The following shows the full BASIC program calling the
example CFunction (which simply adds two integers and returns the result):

	The Micromite CFunction
	Writing a CFunction
	Compiling a CFunction
	Defining the CFunction in MMBasic

