

MMBasic
Language Manual

Ver 4.0

Geoff Graham

For updates to this manual and more details on MMBasic
go to http://mmbasic.com

or http://geoffg.net/maximite.html

Copyright 2011, 2012 Geoff Graham
This manual is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia
(CC BY-NC-SA 3.0)

http://mmbasic.com
http://geoffg.net/maximite.html

MMBasic Language Manual Page 2

MMBasic is a Microsoft BASIC compatible implementation of the BASIC language with floating point and
string variables, long variable names, arrays of floats or strings with multiple dimensions and powerful string
handling.
MMBasic was originally written for the Maximite, a small computer based on the PIC32 microcontroller from
Microchip. It now runs on a variety of hardware platforms including DOS.

This manual describes the MMBasic language. For details of running MMBasic on specific platforms please
refer to the following documentation:
All Maximite Computers: Maximite Hardware Manual from: http://geoffg.net/maximite.html
UBW32 experimenter board: UBW32 MMBasic User Manual from: http://geoffg.net/ubw32.html
CGMMSTICK1 board: http://www.circuitgizmos.com/products/cgmmstick1/cgmmstick1.shtml
DuinoMite series: DuinoMite MMBasic ReadMe included with the DuinoMite update.
DOS: DOS MMBasic ReadMe from: http://mmbasic.com/downloads.html

Throughout this manual Maximite or MM refers to the Maximite family (Maximite, Colour Maximite, mini
Maximite, UBW32, CGMMSTICK1, DuinoMite and others that run the standard Maximite firmware). DOS
refers to the version that runs in a DOS box under Windows.

Contents

Functional Summary... 3
Full Screen Editor ... 5

Input/Output.. 7
Audio and PWM Output.. 8

Graphics and Working with Colour ... 9
Game Playing Features.. 11

Defined Subroutines and Functions.. 12
Implementation Details ... 15

Predefined Read Only Variables .. 17
Commands ... 18

Functions.. 36
Obsolete Commands and Functions .. 42

Appendix A Serial Communications ... 43
Appendix B I2C Communications.. 45

Appendix C 1-Wire Communications.. 49
Appendix D SPI Communications... 50

Appendix E Loadable Fonts ... 52
Appendix F Special Keyboard Keys ... 53

Appendix G Tera Term Setup... 54
Appendix H Sprite Definition Files .. 55

http://geoffg.net/maximite.html
http://geoffg.net/ubw32.html
http://www.circuitgizmos.com/products/cgmmstick1/cgmmstick1.shtml
http://mmbasic.com/downloads.html

MMBasic Language Manual Page 3

Functional Summary
Command and Program Input
At the prompt (the greater than symbol, ie, >) you can enter a command line followed by the enter key and it
will be immediately run. This is useful for testing commands and their effects.
Line numbers are optional. If you use them you can enter a program at the command line by preceding each
program line with a line number however; it is recommended that the full screen editor (the EDIT command) be
used to enter and edit programs.
When entering a line at the command prompt the line can be edited using the arrow keys to move along the
line, the Delete key to delete a character and the Insert key to switch between insert and overwrite. The up
arrow key will move through a list of previously entered commands which can be edited and reused.
A program held in memory can be listed with LIST, run using the RUN command and cleared with the NEW
command. You can interrupt MMBasic at any time by typing CTRL C and control will be returned to the
prompt.

Keyboard/Display
Input can come from either a keyboard or from a computer using a terminal emulator via the USB or serial
interfaces. Both the keyboard and the USB interface can be used simultaneously and can be detached or
attached at any time without affecting a running program.
Output will be simultaneously sent to the USB interface and the video display (VGA or composite). Either can
be attached or removed at any time.

Line Numbers, Program Structure and Editing
In version 3.0 and later the use of line numbers is optional. MMBasic will still run programs written using line
numbers, but it is recommended that new programs avoid them.
The structure of a program line is:
 [line-number] [label:] command arguments [: command arguments] …

Instead of using a line number a label can be used to mark a line of code. A label has the same
specifications (length, character set, etc) as a variable name but it cannot be the same as a command
name. When used to label a line the label must appear at the beginning of a line but after a line
number (if used), and be terminated with a colon character (:). Commands such as GOTO can use labels
instead of line numbers to identify the destination (in that case the label does not need to be followed by the
colon character). For example:
 GOTO xxxx
 - - -
 xxxx: PRINT "We have jumped to here"

MMBasic finds a label much faster than a line number so labels are recommended for new programs.

Multiple commands separated by a colon can be entered on the one line (as in INPUT A : PRINT B).
Long programs (with or without line numbers) can be sent via USB to MMBasic using the XMODEM
command (Maximite only) or the AUTO command.

Program and Data Storage
In DOS the drive letters are as supported by Windows. On the Maximite and Colour Maximite two “drives”
are available for storing and loading programs and data:

 Drive “A:” is a virtual drive using the PIC32’s internal flash memory and has a size of 212KB.
 Drive “B:” is the SD card (if connected). It supports MMC, SD or SDHC memory cards formatted as

FAT16 or FAT32 with capacities up to the largest that you can purchase.
File names must be in 8.3 format prefixed with an optional drive prefix A: or B: (the same as DOS or
Windows). Long file names and directories are not supported. The default drive is B: and this can be changed
with the DRIVE command.
On the Maximite MMBasic will look for a file on startup called “AUTORUN.BAS” in the root directory of the
internal flash drive (A:) then the SD card (B:). If the file is found it will be automatically loaded and run,
otherwise MMBasic will print a prompt (“>”) and wait for input.

MMBasic Language Manual Page 4

Note that the video output will go blank for a short time while writing data to the internal flash drive A:. This
is normal and is caused by a requirement to shut off the video while reprogramming the memory. When using
drive A: you need to be careful not to wear out the flash (the same applies to SD cards). If drive A: is empty,
you could write and delete a file on it every day for 175 years before you would reach the endurance limit - but
if the interval was once a minute you would reach the limit in about 6 weeks.

Storage Commands and Functions
A program can be saved to either drive using the SAVE command. It can be reloaded using LOAD or merged
with the current program using MERGE. A saved program can also be loaded and run using the RUN
command. The RUN command can also be used within a running program, which enables one program to load
and transfer control to another.
Data files can be opened using OPEN and read from using INPUT, LINE INPUT, or INPUT$() or written to
using PRINT or WRITE. On the SD card both data and programs are stored using standard text and can be
read and edited in Windows, Apple Mac, Linux, etc. An SD card can have up to 10 files open simultaneously
while the internal flash drive has a maximum of one file open at a time.
You can list the programs stored on a drive with the FILES command, delete them using KILL and rename
them using NAME. On an SD card the current working directory can be changed using CHDIR. A new
directory can be created with MKDIR or an old one deleted with RMDIR.
Whenever specified a file name can be a string constant (ie, enclosed in double quotes) or a string variable.
This means you must use double quotes if you are directly specifying a file name. Eg, RUN “TEST.BAS”

Timing
You can get the current date and time using the DATE$ and TIME$ functions and you can set them by
assigning the new date and time to them. The Colour Maximite with the optional battery backed clock will
never loose the time, on other Maximites the calendar will start from midnight 1st Jan 2000 on power up. On the
DOS version it will use the system time.
You can freeze program execution for a number of milliseconds using PAUSE. MMBasic also maintains an
internal stopwatch function (the TIMER function) which counts up in milliseconds. You can reset the timer to
zero or any other number by assigning a value to the TIMER.
Using SETTICK in the Maximite versions you can setup a “tick” which will generate a regular interrupt with a
period from one millisecond to over a month. See Interrupts below.

 Expressions
In most cases where a number or string is required you can also use an expression. For example:
FNAME$ = “TEST”: RUN FNAME$ + ”.BAS”

Structured Statements
MMBasic supports a number of modern structured statements.
The DO WHILE … LOOP command and its variants make it easy to build loops without using the GOTO
statement. Defined subroutines and functions make it easy to add your own commands to MMBasic.
The IF… THEN command can span many lines with ELSEIF … THEN, ELSE and ENDIF statements as
required and also spaced over many lines. For example:

IF <condition> THEN ' start a multiline IF
 <statements>
ELSEIF <condition> THEN ' the ELSEIF is optional
 <statements>
ELSE ' the ELSE is optional
 <statements>
ENDIF ' must be used to terminate the IF

MMBasic Language Manual Page 5

Full Screen Editor
An important productivity feature of MMBasic is the full screen editor (this is not available in the DOS version
of MMBasic). It will work using an attached video screen (VGA or composite) and over USB with a VT100
compatible terminal emulator (Tera Term is recommended).

The full screen editor is invoked with the EDIT command. If you just type EDIT without anything else the
editor will automatically start editing whatever is in program memory. If program memory is empty you will
be presented with an empty screen.

The cursor will be automatically positioned at the last place that you were editing at and, if your program had
just been stopped by an error, the cursor will be positioned at the line that caused the error.

You can also run the editor with a file name (eg, EDIT "file.ext") and the editor will edit that file while leaving
program memory untouched. This is handy for examining or changing files on the disk without disturbing your
program.

If you are used to an editor like Notepad you will find that the operation of the full screen editor is familiar.
The arrow keys will move your cursor around in the text, home and end will take you to the beginning or end of
the line. Page up and page down will do what their titles suggest. The delete key will delete the character at
the cursor and backspace will delete the character before the cursor. The insert key will toggle between insert
and overtype modes.

About the only unusual key combination is that two home key presses will take you to the start of the program
and two end key presses will take you to the end.

At the bottom of the screen the status line will list the various function keys used by the editor and their action.
In more details these are:

ESC This will cause the editor to abandon all changes and return to the command prompt with
the program memory unchanged. If you have changed the text you will be asked if this
is really what you want to do.

MMBasic Language Manual Page 6

F1: SAVE This will save the program to program memory and return to the command prompt. If
you are editing a disk file it will save that file to the disk.

F2: RUN This will save the program to program memory and immediately run it.

F3: FIND This will prompt for the text that you want to search for. When you press enter the
cursor will be placed at the start of the first entry found.

SHIFT-F3 Once you have used the search function you can repeatedly search for the same text by
pressing SHIFT-F3.

F4: MARK This is described in detail below.

F5: PASTE This will insert (at the current cursor position) the text that had been previously cut or
copied (see below).

If you pressed the mark key (F4) the editor will change to the mark mode. In this mode you can use the arrow
keys to mark a section of text which will be highlighted in reverse video. You can then delete, cut or copy the
marked text. In this mode the status line will change to show the functions of the function keys in the mark
mode. These keys are:

ESC Will exit mark mode without changing anything.

F4: CUT Will copy the marked text to the clipboard and remove it from the program.

F5: COPY Will just copy the marked text to the clipboard.

DELETE Will delete the marked text leaving the clipboard unchanged.

The best way to learn the full screen editor is to simply fire it up and experiment.

The editor is a very productive method of writing a program. Using the OPTION Fnn command you can
program a function key to generate the command "EDIT" when pressed. So, with one key press you can jump
into the editor where you can make a change. Then by pressing the F3 key you can save and run the program.
If your program stops with an error you can press the edit function key and be back in the editor with the cursor
positioned at the line that caused the error. This edit/run/edit cycle is very fast.

If you are using the full screen editor over USB with Terra Term you must set Terra Term to a screen size of 80
characters by 36 lines. See Appendix G for details.

Note that a terminal emulator like Tera Term can loose its position in the text with multiple fast keystrokes
(like the up and down arrows). If this happens you can press the HOME key twice which will force the editor
to jump to the start of the program and redraw the display.

MMBasic Language Manual Page 7

Input/Output
The following functions are only supported on the Maximite variants (not on the DOS version).

External Input/Output
You can configure an external I/O pin using the SETPIN command, set its output using the PIN()= command
and read the current input value using the PIN() function. Digital I/O uses the number zero to represent a low
voltage and any non-zero number for a high voltage. An analogue input will report the measured voltage as a
floating point number.
The original Maximite has 20 I/O pins numbered 1 to 20. Pins 1 to 10 can be used for analog input and digital
input/output with a maximum input voltage of 3.3V. Pins 11 to 20 are digital only but support input voltages
up to 5V and can be set to open collector.
The DuinoMite has completely different and confusing allocations. See "DuinoMite MMBasic ReadMe.pdf"
Normally digital output is 0V (low) to 3.3V (high) but you can use open collector to drive 5V circuit. This
means that the pin can be pulled down (when the output is low) but will go high impedance when the output is
high. So, with a pull up resistor to 5V an output configured as open collector you can drive 5V logic signals.
Typical value of the pull up resistor is 1K to 4.7K.

Arduino Connector
In addition to the 20 I/O pins described above the Colour Maximite has an extra 20 I/O pins on the Arduino
compatible connector (40 I/O pins in total). These are labelled D0 to D13 and A0 to A5.
You can use the labels D0, D1, etc in the SETPIN and PIN statements or you can use their corresponding
numbers (D0 = 21, D1 = 22, etc and A0 = 35, A1 = 36, etc). The digital pins (D0 to D13) have the same
characteristics (5V, open collector, etc) as the digital pins 11 to 20 and the analog capable pins (A0 to A5) have
the same capabilities as pins 1 to 10.

Communications
Two serial ports are supported with speeds up to 19200 baud with configurable buffer sizes and optional
hardware flow control. The serial ports are opened using the OPEN command and any command or function
that uses a file number can be used to send and receive data. See Appendix A for a full description.
Communications to slave or master devices on an I2C bus is supported with eight commands (see Appendix B
for a full description). MMBasic fully supports bus master and slave mode, 10 bit addressing, address masking
and general call, as well as bus arbitration (ie, bus collisions in a multi-master environment).
The Serial Peripheral Interface (SPI) communications protocol is supported with the SPI command. See
Appendix D for the details. The Dallas 1-Wire protocol is also supported. See Appendix C for details.

Interrupts
Any external I/O pin can be configured to generate an interrupt using the SETPIN command with up to 29
interrupts (including the tick interrupt) active at any one time. Interrupts can be set up to occur on a rising or
falling digital input signal and will cause an immediate branch to a specified line number or label (similar to a
GOSUB). The target can be the same or different for each interrupt. Return from an interrupt is via the
IRETURN statement. All statements (including GOSUB/RETURN) can be used within an interrupt.
If two or more interrupts occur at the same time they will be processed in order of pin numbers (ie, an interrupt
on pin 1 will have the highest priority). During processing of an interrupt all other interrupts are disabled until
the interrupt routine returns with an IRETURN. During an interrupt (and at all times) the value of the interrupt
pin can be accessed using the PIN() function.
A periodic interrupt (or regular “tick”) with a period specified in milliseconds can be setup using the SETTICK
statement. This interrupt has the lowest priority.
Interrupts can occur at any time but they are disabled during INPUT statements. If you need to get input from
the keyboard while still accepting interrupts you should use the INKEY$ function. When using interrupts the
main program is completely unaffected by the interrupt activity unless a variable used by the main program is
changed during the interrupt.
For most programs MMBasic will respond to an interrupt in under 100µS. To prevent slowing the main
program by too much an interrupt should be short and execute the IRETURN statement as soon as possible.
Also remember to disable an interrupt when you have finished needing it – background interrupts can cause
strange and non-intuitive bugs.

MMBasic Language Manual Page 8

Audio and PWM Output
On the Maximite variants there are a number of ways that you can use the sound output. You can play
synthesised music, generate tones or generate program controlled voltages (PWM).

PLAYMOD
This command will play synthesised music in the background while the program is running. The music must
be in the MOD format and the file containing the music must be located on the internal flash drive (drive A:).
The audio is high quality and MMBasic will generate full stereo on the Colour Maximite.
The MOD format is a music file format originating from the MOD file format on Amiga systems in the late
1980s. It is not a recording of the music (like a MP3 file) - instead it contains instructions for synthesising the
music. On the original Amiga this task was performed by dedicated hardware.
MMBasic will read this file and continuously play the music in the background while the program that
launched the music will continue running in the foreground. Be aware that synthesising music is a CPU
intensive activity and uses a lot of memory and this could affect the performance of the program.
A description of the MOD format can be found at: http://en.wikipedia.org/wiki/MOD_(file_format)
A large selection of files that can be played on the Maximite can be found at: http://modarchive.org (look for
files with the .MOD extension). Because the file must be located on drive A: to play it would be wise to select
reasonably small files.
You can also create your own music using a tracker. For an example see: http://www.modplug.com

TONE
This command will create two tones for the Colour Maximite that will be outputted separately on the left and
right sound channels. On the monochrome Maximite only one tone is generated. The tone is a synthesised sine
wave and can be in the range of 1Hz to 20KHz with a resolution of 1Hz and is very accurate as it is locked to
the PIC32's crystal oscillator. When the frequency is changed there is no interruption in the output so the
output can be made to glide smoothly across a range of frequencies.
The playing time can be specified in milliseconds and the tone will play in the background (ie, the program
continues running).

SOUND
The sound command is included only for compatibility with older programs. It generates a single frequency
square wave and should be replaced with the tone or PWM command in new programs.

PWM
The PWM (Pulse Width Modulation) command allows the Maximite to generate two square waves with
programmed controlled duty cycle. By varying the duty cycle you can generate a program controlled voltage
outputs for use in controlling external devices that require an analog input (power supplies, motor controllers,
etc). The Colour Maximite has two channels while the monochrome Maximite has a single channel.
The frequency for both channels is the same and can be from 20Hz to 1MHz. The duty cycle for each channel
can be independently set from between 0% and 100% with a 0.1% resolution.
This command uses the sound output for generating the PWM signal so the components on this output may
need to be changed to allow this output to work as a PWM output.

http://en.wikipedia.org/wiki/MOD_(file_format)
http://modarchive.org
http://www.modplug.com

MMBasic Language Manual Page 9

Graphics and Working with Colour
Graphics
Graphics commands operate on the video output only (not USB). Coordinates are measured in pixels with x
being the horizontal coordinate and y the vertical coordinate. The top left of the screen is at location x = 0 and
y = 0, and the bottom right of the screen defined by the read-only variables x = MM.HRES and y = MM.VRES
which change depending on the video mode selected (VGA or composite). Increasing positive numbers
represent movement down the screen and to the right.
You can clear the screen with CLS and an individual pixel can be turned on or off and its colour set with
PIXEL(x,y) = . You can draw lines and boxes with LINE, and circles using CIRCLE. You can also set the
screen location (in pixels) of the PRINT output using @(x,y) and the SAVEBMP command will save the
current screen as a BMP file. LOADBMP will load and display a bitmap image stored on the SD card.

Working with Colour
The Colour Maximite supports eight colours (black, blue, green, cyan, red, purple, yellow and white). The
monochrome Maximite or DuinoMite support just two (black and white). In most places you can also specify
the colour as -1 to invert a pixel (this is useful in animation).
Throughout MMBasic you can refer to the colours by their name or their corresponding numbers where
black = 0, blue = 1, green = 2, etc through to white = 7. Commands such as LINE and CIRCLE use this colour
or number to specify the colour to draw. For example:
 CIRCLE (100, 100), 50, CYAN will draw a circle in cyan.
 CIRCLE (100, 100), 50, 3 will also draw a circle in cyan (colour = 3).
You can also specify a default colour that will be used for all screen output with the COLOUR command. For
example: COLOUR PURPLE will set the colour of text to purple (and any other output where the colour is
not specified). The COLOUR command also takes a second parameter for the background colour. So,
COLOUR YELLOW, BLUE specifies that text will be displayed in yellow on a blue background.
In addition to the COLOUR command you can change the colour of text by embedding colour codes into
strings using the CLR$() function. For example, the following will display each word in a different colour:

Txt$ = "This is " + CLR$(RED) "red " + CLR$(YELLOW) + "yellow"
PRINT Txt$

You can also use this function to set the background colour by supplying a second parameter. For example:
PRINT CLR$(YELLOW,RED) " ALARM "

If the function is used without any parameters (eg, CLR$()) it will reset the colours to the defaults set by the
last COLOUR command. The colours are also reset when the print command terminates.
This function simply generates a two character string where the first character is the number 128 plus the
foreground colour number and the second character is the number 192 plus the background colour number.
You can use this trick to embed colour commands in any text, even text read from a text file on the SD card.

Colour Modes
The video system can be configured into one of four modes using the MODE command. This enables the
programmer to trade off the number of colours used on the screen and the graphic resolution against the amount
of memory required by the video driver. Modes 1 and 4 use the least amount of memory while mode 3 uses the
most. The syntax of the MODE command is: MODE colour-mode, palette
The 'colour-mode' can be one of four numbers:
1 Monochrome mode. In this mode the Colour MMBasic operates the same as the monochrome MMBasic

for the Maximite and has the maximum amount of free memory available for programs and data. The
second argument of the MODE command ('palette') selects the colour to be used for all output. It can be
any colour number from black to white.

2 Four colour mode. In this mode four colours (including black) are available. The actual colours are
selected by a number (1 to 6) used in the second argument of the MODE command ('palette'). See the
following image or the MODE command for a listing of the actual colours available.

3 Eight colour mode. In this mode all eight colours are available and can be used simultaneously anywhere
on the screen. The 'palette' argument is not required and will be ignored if specified. MODE 3 uses the
most memory but there still is plenty left for programs and data. This is the default when the Colour
Maximite is first powered up.

MMBasic Language Manual Page 10

4 240x216 pixel mode. In this mode all eight colours are available and the video resolution is halved
(meaning that characters and graphics are doubled in size). This mode is most suitable for games as all
colours are available, it has the maximum amount of free memory and drawing of graphics is very fast.
The 'palette' argument is not required and will be ignored if specified.

This is an example of what can be selected in all four colour modes:

You can change the mode and the palette at any time and as often as you need, even within a running program.

Scan Line Colour Override
In mode 1 (monochrome) there is an additional facility to change the colour of each horizontal line of pixels on
the screen using the SCANLINE command. This is intended mostly for programmers writing games and
provides limited control over colour while still providing the maximum amount of free memory. The syntax is:

SCANLINE colour, startline, endline
This command can only be used in MODE 1, 7 (monochrome with the colour set to white) and is used to set the
colour for each horizontal scan line of pixels on the screen. 'colour' is the colour to be used and can be any one
of the eight colours, 'startline' is the starting scan line to be set to that colour and 'endline' is the ending line.
The scan lines are numbered from 0 at the top of the screen to 431 at the bottom of the screen. The numbering
is the same as that used when specifying the vertical coordinates of a pixel.
You can use multiple SCANLINE commands to set multiple scan lines to different colours. For example:

SCANLINE RED, 0, 9 ' set the top 10 lines to red
SCANLINE YELLOW, 120 ' and set only line 120 to yellow
SCANLINE BLUE, 200, 219 ' and set a band of 20 lines to blue

To turn off the override imposed by the use of SCANLINE commands you can use the MODE command to
reselect mode 1 or a change to a different mode. It is also automatically turned off when control is returned to
the command prompt.

MMBasic Language Manual Page 11

Game Playing Features
MMBasic 4.x introduces a number of features that are intended to make it easier to write games on the
Maximite.

MODE 4
The colour MODE 4 described in the previous section is mostly intended for games. It provides eight colours
and leaves plenty of free memory for the other aspects of an animated game (the program, sprites, arrays, and
so on).
Because this colour mode has only one quarter of the pixels the graphics operations are much faster due to the
fact that there are fewer pixels that need to be manipulated by MMBasic when drawing on the screen.

BLIT
This command will move an area of the video screen from one location to another. The destination can overlap
the source area and the BLIT command will copy the video data correctly to avoid corruption. On the Colour
Maximite you can also independently specify what colour planes to copy.
This method of moving video data is much faster than copying pixels one by one and allows for rapid
animation on the screen. It can also be used to replicate a pattern like a border or a brick wall to build a
complete image.

SPRITE
A sprite is a 16x16 bit graphic image that can be moved about on the screen independently of the background.
When the sprite is displayed MMBasic will automatically save the background text and graphics under the
sprite and when the sprite is turned off or moved MMBasic will restore the background.
The sprites are defined in a file which is loaded into memory using the SPRITE LOAD command, the number
of sprites contained in the file is only limited by the amount of available memory. Each sprite in the file can
contain pixels of any colour (on the Colour Maximite) and can also have transparent pixels which allow the
background to show through. See Appendix H for a detailed description of creating a sprite file.
To manipulate the sprites you can use the command SPRITE ON which will display a specific sprite at a
specified location on the screen. SPRITE MOVE will move a sprite to a new location and restore the
background. SPRITE OFF will remove a sprite from the screen and restore the background.
Sprites should not overlap but if they do you should turn them off in the reverse sequence that you turned them
on before you turn them on again at their new location. This will enable the background image to be correctly
maintained.
For example, the following two sprites overlap:

SPRITE ON 1, 100, 150 ' sprite 1 is drawn at x = 100, y = 150
SPRITE ON 2, 110, 160 ' sprite 2 overlaps

To move the sprites they need to be turned off in the reverse sequence:
SPRITE OFF 2
SPRITE OFF 1

Then they can be redrawn at their new location:
SPRITE ON 1, 104, 154 ' sprite 1 is drawn at x = 104, y = 154
SPRITE ON 2, 116, 166 ' sprite 2 still overlaps

Because sprites are drawn so fast the user is unaware that the sprite has been turned off then redrawn.

LOADBMP and FONTS
The LOADBMP command will load a colour or monochrome bitmap image and display it at a specified
location on the screen. This is handy for loading background images for games.
The FONT command can also be used to load custom designed graphic images and display them on the screen.

PEEK/POKE
With the PEEK and POKE commands you can now use constant keywords to access special sections of
memory (like the video memory) and these keywords will be valid with future versions of MMBasic. This
makes it easy to access internal MMBasic data structures in a portable manner.

MMBasic Language Manual Page 12

Defined Subroutines and Functions
Defined subroutines and functions are useful features to help in organising programs so that they are easy to
modify and read. A defined subroutine or function is simply a block of programming code that is contained
within a module and can be called from anywhere within your program. It is the same as if you have added
your own command or function to the language.
For example, assume that you would like to have the command FLASH added to MMBasic, its job would be to
flash the power light on the Maximite. You could define a subroutine like this:

Sub FLASH
 Pin(0) = 1
 Pause 100
 Pin(0) = 0
End Sub

Then, in your program you just use the command FLASH to flash the power LED. For example:
IF A <= B THEN FLASH

If the FLASH subroutine was in program memory you could even try it out at the command prompt, just like
any command in MMBasic. The definition of the FLASH subroutine can be anywhere in the program but
typically it is at the start or end. If MMBasic runs into the definition while running your program it will simply
skip over it.

Subroutine Arguments
Defined subroutines can have arguments (sometimes called parameter lists). In the definition of the subroutine
they look like this:

Sub MYSUB (arg1, arg2$, arg3)
 <statements>
 <statements>
End Sub

And when you call the subroutine you can assign values to the arguments. For example:
MYSUB 23, "Cat", 55

Inside the subroutine arg1 will have the value 23, arg2$ the value of "Cat", and so on. The arguments act
like ordinary variables but they exist only within the subroutine and will vanish when the subroutine ends. You
can have variables with the same name in the main program and they will be different from arguments defined
for the subroutine (at the risk of making debugging harder).

When calling a subroutine you can supply less than the required number of values. For example:
MYSUB 23

In that case the missing values will be assumed to be either zero or an empty string. For example, in the above
case arg2$ will be set to "" and arg3 will be set to zero. This allows you to have optional values and, if the
value is not supplied by the caller, you can take some special action.

You can also leave out a value in the middle of the list and the same will happen. For example:
MYSUB 23, , 55

Will result in arg2$ being set to "".

Local Variables
Inside a subroutine you will need to use variables for various tasks. In portable code you do not want the name
you chose for such a variable to clash with a variable of the same name in the main program. To this end you
can define a variable as LOCAL.
For example, this is our FLASH subroutine but this time we have extended it to take an argument (nbr) that
specifies how many times to flash the LED.

Sub FLASH (nbr)
 Local count
 For count = 1 To nbr
 Pin(0) = 1
 Pause 100
 Pin(0) = 0

MMBasic Language Manual Page 13

 Pause 150
 Next count
End Sub

The counting variable (count) is declared as local which means that (like the argument list) it only exists
within the subroutine and will vanish when the subroutine exits. You can have a variable called count in your
main program and it will be different from the variable count in your subroutine.

If you do not declare the variable as local it will be created within your program and be visible in your main
program and subroutines, just like a normal variable.
You can define multiple items with the one LOCAL command. If an item is an array the LOCAL command
will also dimension the array (ie, you do not need the DIM command). For example:

LOCAL NBR, STR$, ARR(10, 10)

You can also use local variables in the target for GOSUBs. For example:
 GOSUB MySub
 ...
MySub:
 LOCAL X, Y
 FOR X = 1 TO ...
 FOR Y = 5 TO ...
 <statements>
 RETURN

The variables X and Y will only be valid until the RETURN statement is reached and will be different from
variables with the same name in the main body of the program.

Defined Functions
Defined functions are similar to defined subroutines with the main difference being that the function is used to
return a value in an expression. For example, if you wanted a function to select the maximum of two values
you could define:

Function Max(a, b)
 If a > b
 Max = a
 Else
 Max = b
 EndIf
End Function

Then you could use it in an expression:
SetPin 1, 1 : SetPin 2, 1
Print "The highest voltage is" Max(Pin(1), Pin(2))

The rules for the argument list in a function are similar to subroutines. The only difference is that brackets are
required around the argument list when you are calling a function (they are optional when calling a subroutine).
To return a value from the function you assign a value to the function's name within the function. If the
function's name is terminated with a $ the function will return a string, otherwise it will return a number.
Within the function the function's name acts like a standard variable.
As another example, let us say that you need a function to format time in the AM/PM format:

Function MyTime$(hours, minutes)
 Local h
 h = hours
 If hours > 12 Then h = h - 12
 MyTime$ = Str$(h) + ":" + Str$(minutes)
 If hours <= 12 Then
 MyTime$ = MyTime$ + "AM"
 Else
 MyTime$ = MyTime$ + "PM"
 EndIf
End Function

MMBasic Language Manual Page 14

As you can see, the function name is used as an ordinary local variable inside the subroutine. It is only when
the function returns that the value assigned to MyTime$ is made available to the expression that called it.
This example also illustrates that you can use local variables within functions just like subroutines.

Passing Arguments by Reference
If you use an ordinary variable (ie, not an expression) as the value when calling a subroutine or a function, the
argument within the subroutine/function will point back to the variable used in the call and any changes to the
argument in your routine will also be made to the supplied variable. This is called passing arguments by
reference.
For example, you might define a subroutine to swap two values, as follows:

Sub Swap a, b
 Local t
 t = a
 a = b
 b = t
End Sub

In your calling program you would use variables for both arguments:
Swap nbr1, nbr2

And the result will be that the values of nbr1 and nbr2 will be swapped.
Unless you need to return a value via the argument you should not use an argument as a general purpose
variable inside a subroutine or function. This is because another user of your routine may unwittingly use a
variable in their call and that variable will be "magically" changed by your routine. It is much safer to assign
the argument to a local variable and manipulate that instead.

Additional Notes
There can be only one END SUB or END FUNCTION for each definition of a subroutine or function. To exit
early from a subroutine (ie, before the END SUB command has been reached) you can use the EXIT SUB
command. This has the same effect as if the program reached the END SUB statement. Similarly you can use
EXIT FUNCTION to exit early from a function.
You cannot use arrays in a subroutine or function's argument list however the caller can use them. For
example, this is a valid way of calling the Swap subroutine (discussed above):

Swap dat(i), dat(I + 1)

This type of construct is often used in sorting arrays.
The use of defined subroutines and functions should reduce the need to add specialised features to MMBasic.
For instance, there have been a few requests to add bit shifting functions to the language. Now you can do that
yourself… this is the right shift function:

Function RShift(nbr, bits)
 If nbr < 0 or bits < 0 THEN ERROR "Invalid argument"
 RShift = nbr\(2^bits)
End Function

You can now use this function as if it is a part of the language:
a = &b11101001
b = RShift(a, 3)

After running this fragment of code the variable b would have the binary value of 11101.
The defined subroutine and function is intended to be a portable lump of code that you can insert into any
program. This is why the full screen editor has the CTRL-F keys for inserting another file. The idea is that you
can keep your defined routines in a file and whenever you need them you can quickly insert them using
CTRL-F.
So, it would be easy to create a library of bit manipulation functions like that described above and insert them
into any program when needed.

MMBasic Language Manual Page 15

Implementation Details
Naming Conventions
Command names, function names, labels, variable names, file names, etc are not case sensitive, so that "Run"
and "RUN" are equivalent and "dOO" and "Doo" refer to the same variable.
There are two types of variable: numeric which stores a floating point number (eg, 45.386), and string which
stores a string of characters (eg, “Tom”). String variable names are terminated with a $ symbol (eg, name$)
while numeric variables are not.
Variable names and labels can start with an alphabetic character or underscore and can contain any alphabetic
or numeric character, the period (.) and the underscore (_). They may be up to 32 characters long. A variable
name or a label must not be the same as a function or one of the following keywords: THEN, ELSE, GOTO,
GOSUB, TO, STEP, FOR, WHILE, UNTIL, LOAD, MOD, NOT, AND, OR, XOR. Eg, step = 5 is illegal as
STEP is a keyword. In addition, a label cannot be the same as a command name.

Constants
Numeric constants may begin with a numeric digit (0-9) for a decimal constant, &H for a hexadecimal
constant, &O for an octal constant or &B for a binary constant. For example &B1000 is the same as the
decimal constant 8.
Decimal constants may be preceded with a minus (-) or plus (+) and may terminated with 'E' followed by an
exponent number to denote exponential notation. For example 1.6E+4 is the same as 16000.
String constants are surrounded by double quote marks (“). Eg, “Hello World”.

Operators and Precedence
The following operators, in order of precedence, are recognised. Operators that are on the same level (for
example + and -) are processed with a left to right precedence as they occur on the program line.

Arithmetic operators:

^ Exponentiation

* / \ MOD Multiplication, division, integer division and modulus (remainder)

+ - Addition and subtraction

Logical operators:

NOT logical inverse of the value on the right

<> < > <= =<
>= =>

Inequality, less than, greater than, less than or equal to, less than or
equal to (alternative version), greater than or equal to, greater than or
equal to (alternative version)

= equality

AND OR XOR Conjunction, disjunction, exclusive or

The operators AND, OR and XOR are bitwise operators. For example PRINT 3 AND 6 will output 2.
The other logical operations result in the number 0 (zero) for false and 1 for true. For example the statement
PRINT 4 >= 5 will print the number zero on the output and the expression A = 3 > 2 will store +1 in A.
The NOT operator is highest in precedence so it will bind tightly to the next value. For normal use the
expression to be negated should be placed in brackets. For example, IF NOT (A = 3 OR A = 8) THEN …

String operators:

+ Join two strings

<> < > <= =<
>= =>

Inequality, less than, greater than, less than or equal to, less than or
equal to (alternative version), greater than or equal to, greater than or
equal to (alternative version)

= equality

MMBasic Language Manual Page 16

Implementation Characteristics
Maximum length of a command line is 255 characters.
Maximum length of a variable name or a label is 32 characters.
Maximum number of dimensions to an array is 8.
Maximum number of arguments to commands that accept a variable number of arguments is 50.
Maximum number of user defined subroutines and functions (combined): 64
Numbers are stored and manipulated as single precision floating point numbers. The maximum number that
can be represented is 3.40282347e+38 and the minimum is 1.17549435e-38
The range of integers (whole numbers) that can be manipulated without loss of accuracy is ±16777100.
Maximum string length is 255 characters.
Maximum line number is 65000.
Maximum length of a file pathname (including the directory path) is 255 characters.
Maximum number of files simultaneously open is 10 on the SD card and one on the internal flash drive (A:).
Maximum SD card size is 2GB formatted with FAT16 or 2TB formatted with FAT32.
Size of the internal flash drive (A:) is 200KB.
Maximum size of a loadable video font is 64 pixels high x 255 pixels wide and 256 characters.

Compatibility
MMBasic implements a large subset of Microsoft’s GW-BASIC. There are numerous small differences due to
physical and practical considerations but most MMBasic commands and functions are essentially the same. An
online manual for GW-BASIC is available at http://www.antonis.de/qbebooks/gwbasman/index.html and this
provides a more detailed description of the commands and functions.
MMBasic also implements a number of modern programming structures documented in the ANSI Standard for
Full BASIC (X3.113-1987) or ISO/IEC 10279:1991. These include SUB/END SUB, the DO WHILE …
LOOP and structured IF .. THEN … ELSE … ENDIF statements.

License
MMBasic is Copyright 2011, 2012 Geoff Graham - http://mmbasic.com.
The compiled object code (the .hex file) is free software: you can use or redistribute it as you please.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The source code is available via subscription (free of charge) to individuals for personal use or under a
negotiated license for commercial use. In both cases go to http://mmbasic.com for details.
This manual is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia
license (CC BY-NC-SA 3.0)

http://www.antonis.de/qbebooks/gwbasman/index.html
http://mmbasic.com.
http://mmbasic.com

MMBasic Language Manual Page 17

Predefined Read Only Variables
The centre column specifies the platform (CMM is the Colour Maximite, MM is the monochrome Maximite
and DuinoMite, DOS is the Windows version). Square brackets indicate that the parameter or characters are
optional.

MM.HRES
MM.VRES

CMM
MM

The horizontal and vertical resolution of the current video display screen
in pixels.

MM.HPOS
MM.VPOS

CMM
MM

The current horizontal and vertical position (in pixels) following the last
graphics or print command.

MM.VER CMM
MM
DOS

The version number of the firmware in the form aa.bbcc where aa is the
major version number, bb is the minor version number and cc is the
revision number (normally zero but A = 01, B = 02, etc).

MM.DEVICE$ CMM
MM
DOS

A string representing the device or platform that MMBasic is running
on. Currently this variable will contain one of the following:

"Maximite" on the standard Maximite and compatibles.
"Colour Maximite" on the Colour Maximite and UBW32.
"DuinoMite" when running on one of the DuinoMite family.
"DOS" when running on Windows XP/Vista/
"Generic PIC32" for the generic version of MMBasic on a PIC32.

MM.DRIVE$ CMM
MM

The current default drive returned as a string containing either “A:” or
“B:”.

MM.FNAME$ CMM
MM
DOS

The name of the file that will be used as the default for the SAVE
command. This is set by LOAD, RUN and SAVE.

MM.ERRNO CMM
MM
DOS

Is set to the error number if a statement involving the SD card fails or
zero if the operation succeeds. This is dependent on the setting of
OPTION ERROR. For the Maximite (colour and monochrome) the
possible values for MM.ERRNO are:

0 = No error
1 = No SD card found
2 = SD card is write protected
3 = Not enough space
4 = All root directory entries are taken
5 = Invalid filename
6 = Cannot find file
7 = Cannot find directory
8 = File is read only
9 = Cannot open file
10 = Error reading from file
11 = Error writing to file
12 = Not a file
13 = Not a directory
14 = Directory not empty
15 = Hardware error accessing the storage media
16 = Flash memory write failure

MMBasic Language Manual Page 18

Commands
The centre column specifies the platform (CMM is the Colour Maximite, MM is the monochrome Maximite
and DuinoMite, DOS is the Windows version). Square brackets indicate that the parameter or characters are
optional.

‘ (single quotation mark) CMM
MM
DOS

Starts a comment and any text following it will be ignored. Comments
can be placed anywhere on a line.

? (question mark) CMM
MM
DOS

Shortcut for the PRINT command.

AUTO
or
AUTO start
or
AUTO start, increment

CMM
MM
DOS

Enter automatic line entry mode. To terminate this mode use Control-C.
With no arguments this command will take lines of text from the
keyboard or USB and append them to program memory without
modification. This is useful for adding lines that do not have line
numbers and when pasting a program into a terminal emulator.
If 'start' is provided the lines will be prefixed with an automatically
generated line number. 'start' is the starting line number and 'increment'
is the step size (default 10). If the automatically generated number is the
same as an existing line in memory it will be preceded by an asterisk (*).
In this case pressing Enter without entering any text will preserve the
line in memory and generate the next number.

BLIT x1, y1, x2, y2, w, h
or
BLIT x1, y1, x2, y2, w, h,
RGB

CMM
MM

Copy one section of the video screen to another.
The source coordinate is 'x1' and 'y1'. The destination coordinate is 'x2'
and 'y2'. The width of the screen area to copy is 'w' and the height is 'h'.
All arguments are in pixels. The source and destination can overlap.
Colour Maximite only: If the optional argument 'RGB' is specified then
only the specified colour planes will be copied. For example, 'GB' will
copy only the green and blue colour planes.

CHDIR dir$ CMM
MM
DOS

Change the current working directory on the SD card to ‘dir$’
The special entry “..” represents the parent of the current directory and
“.” represents the current directory.

CIRCLE (x, y) ,r [,c [,F]] CMM
MM

Draws a circle on the video output centred at 'x' and 'y' with a radius of
'r'. 'c' is the colour and defaults to the current foreground colour if not
specified. 'c' can also be -1 which will invert the pixels. The F option
will cause the circle to be filled according to the 'c' parameter.
See the section "Graphics and Working with Colour" for a definition of
the colours and graphics coordinates.
Note that because the pixels are not exactly square the circle will be oval
to some degree.

CLEAR CMM
MM
DOS

Delete all variables and recover the memory used by them.
See ERASE for deleting specific array variables.

CLOSE [#]nbr [,[#]nbr] … CMM
MM
DOS

Close the file(s) or serial port(s) previously opened with the file number
‘nbr’. The # is optional. Also see the OPEN command.

MMBasic Language Manual Page 19

CLOSE CONSOLE CMM
MM

Close a serial port that had been previously opened as the console.

CLS CMM
MM
DOS

Clears the video display screen and places the cursor in the top left
corner.

COLOUR fore [, back]
or
COLOR fore [, back]

CMM Sets the default colour for commands that display on the screen (PRINT,
LINE, etc). 'fore' is the foreground colour, 'back' is the background
colour. The background is optional and if not specified will default to
black.
The actual colour displayed will depend on the current colour mode (see
the MODE command).
See "Working with Colour" at the start of this manual for more details.

CONFIG COMPOSITE
NTSC | PAL
or

CONFIG VIDEO OFF | ON
or

CONFIG CASE
UPPER | LOWER | TITLE
or

CONFIG KEYBOARD
US | UK | FR | GR | BE | IT
or

CONFIG TAB 2 | 4 | 8

CMM
MM

The COMPOSITE setting will change the timing for the composite video
output. Default is PAL.
The VIDEO setting will switch the video output on or off. There is a
performance improvement with the video off but the biggest benefit is
that the unused memory is returned to the memory pool. Default is ON.
The CASE setting will change the case used for listing command and
function names when using the LIST command. The default is TITLE
but the old standard of MMBasic can be restored using CONFIG CASE
UPPER.
The KEYBOARD setting will change the keyboard layout to suit
standard keyboards (US), United Kingdom (UK), French (FR), German
(GR), Belgium (BE) or Italian (IT) keyboards. Default is US.
The TAB setting will set the spacing for the tab key. Default is 2.
The CONFIG command differs from other options. It permanently
reconfigures MMBasic and it only needs to be run once (ie, the setting
will be remembered even with the power turned off).
The power must be cycled after changing a setting for it to take effect.

CONTINUE CMM
MM
DOS

Resume running a program that has been stopped by an END statement,
an error, or CTRL-C. The program will restart with the next statement
following the previous stopping point.

COPY src$ TO dest$ CMM
MM
DOS

Copy the file named 'src$' to another file named 'dest$'. 'dest$' can be
just a drive designation (ie, A:) and this makes it convenient to copy files
between drives.

COPYRIGHT CMM
MM
DOS

List all contributors to MMBasic and summarise the copyright.

DATA constant[,constant]... CMM
MM
DOS

Stores numerical and string constants to be accessed by READ.
String constants do not need to be quoted unless they contain significant
spaces, the comma or a keyword (such as THEN, WHILE, etc).
Numerical constants can also be expressions such as 5 * 60.

MMBasic Language Manual Page 20

DATE$ = "DD-MM-YY"
or
DATE$ = "DD/MM/YY"

CMM
MM

Set the date of the internal clock/calendar.
DD, MM and YY are numbers, for example: DATE$ = “28-7-2012”
Normally the date is set to “1-1-2000” on power up. If the real time
clock option is fitted to the Colour Maximite the current date will be
automatically set on power up using that facility.

DELETE line
DELETE -lastline
DELETE firstline -
DELETE firstline - lastline

CMM
MM
DOS

Deletes a program line or a range of lines.
If '–lastline' is used it will delete from the start of the first line in the
program to the end of 'lastline'. If 'startline-' is used it will delete from
start of 'startline' to the end of the program.
Also see the NEW command.

DIM variable(elements...)
[variable(elements...)]...

CMM
MM
DOS

Specifies variables that have more than one element in a single
dimension, i.e., arrayed variables.

DO
<statements>
LOOP

CMM
MM
DOS

This structure will loop forever; the EXIT command can be used to
terminate the loop or control must be explicitly transferred outside of the
loop by commands like GOTO or RETURN (if in a subroutine).

DO WHILE expression
<statements>
LOOP

CMM
MM
DOS

Loops while "expression" is true (this is equivalent to the older WHILE-
WEND loop, also implemented in MMBasic). If, at the start, the
expression is false the statements in the loop will not be executed, even
once.

DO
<statements>
LOOP UNTIL expression

CMM
MM
DOS

Loops until the expression following UNTIL is true. Because the test is
made at the end of the loop the statements inside the loop will be
executed at least once, even if the expression is false.

DRIVE drivespec$ CMM
MM

Change the default drive used for file operations that do not specify a
drive to that specified in drivespec$. This can be the string “A:” or “B:”.
See also the predefined read-only variable MM.DRIVE$.

EDIT
or
EDIT filename
or
EDIT line-number

CMM
MM

Invoke the full screen editor. This can be used to edit either the program
currently loaded in memory or a program file. It can also be used to
view and edit text data files.
If EDIT is used on its own it will edit the program memory. If 'filename'
is supplied the file will be edited leaving the program memory
untouched.
On entry the cursor will be automatically positioned at the last line
edited or, if there was an error when running the program, the line that
caused the error. If 'line-number' is specified on the command line the
program in memory will be edited and cursor will be placed on the line
specified.
The editing keys are:

Left/Right arrows Moves the cursor within the line.
Up/Down arrows Moves the cursor up or down a line.
Page Up/Down Move up or down a page of the program.
Home/End Moves the cursor to the start or end of the line. A

second Home/End will move to the start or end of
the program.

Delete Delete the character over the cursor. This can be
the line separator character and thus join two

MMBasic Language Manual Page 21

lines.
Backspace Delete the character before the cursor.
Insert Will switch between insert and overtype mode.
Escape Key Will close the editor without saving (confirms

first).
Function Key 1 Will save the edited text and exit.
Function Key 2 Will save, exit and run the program.
Function Key 3 Will invoke the search function.
SHIFT F3 Will repeat the search using the text entered at

F3.
Function Key 4 Will mark text for cut or copy (see below).
Function Key 5 Will paste text previously cut or copied.
CTRL-F Will insert a file into the program being edited.

When in the mark text mode (entered with F4) the editor will allow you
to use the arrow keys to highlight text which can be deleted, cut to the
clipboard or simply copied to the clipboard. The status line will change
to indicate the new functions of the function keys.
While the full screen editor is running it will override the programmable
function keys F1 to F5. When the editor exits all programmable
functions will be restored.
The editor will work with lines wider than the screen but characters
beyond the screen edge will not be visible. You can split such a line by
inserting a new line character and the two lines can be later rejoined by
deleting the inserted new line character.
All the editing keys work with a VT100 terminal emulator so editing can
also be accomplished over a USB or serial link. The editor has been
tested with Tera Term and this is the recommended software. Note that
Tera Term must be configured for an 80 column by 36 line display.

ELSE CMM
MM
DOS

Introduces a default condition in a multiline IF statement.
See the multiline IF statement for more details.

ELSEIF expression THEN CMM
MM
DOS

Introduces a secondary condition in a multiline IF statement.
See the multiline IF statement for more details.

ENDIF CMM
MM
DOS

Terminates a multiline IF statement.
See the multiline IF statement for more details.

END CMM
MM
DOS

End the running program and return to the command prompt.

END FUNCTION CMM
MM
DOS

Marks the end of a user defined function. See the FUNCTION
command.
Each sub must have one and only one matching END FUNCTION
statement. Use EXIT FUNCTION if you need to return from a
subroutine from within its body.
Only one space is allowed between END and FUNCTION.

MMBasic Language Manual Page 22

END SUB CMM
MM
DOS

Marks the end of a user defined subroutine. See the SUB command.
Each sub must have one and only one matching END SUB statement.
Use EXIT SUB if you need to return from a subroutine from within its
body.
Only one space is allowed between END and SUB.

ERASE variable
[,variable]...

CMM
MM
DOS

Deletes arrayed variables and frees up the memory.
Use CLEAR to delete all variables including all arrayed variables.

ERROR [error_msg$] CMM
MM
DOS

Forces an error and terminates the program. This is normally used in
debugging or to trap events that should not occur.

EXIT
EXIT FOR
EXIT FUNCTION
EXIT SUB

CMM
MM
DOS

EXIT by itself provides an early exit from a DO...LOOP
EXIT FOR provides an early exit from a FOR...NEXT loop.
EXIT FUNCTION provides an early exit from a defined function.
EXIT SUB provides an early exit from a defined subroutine.
Only one space is allowed between the two words.

FILES [fspec$] CMM
MM
DOS

Lists files in the current directory on the SD or internal drive (drive A:).
The SD card (drive B:) may use an optional ‘fspec $’. Question marks
(?) will match any character and an asterisk (*) will match any number
of characters. If omitted, all files will be listed. For example:

. Find all entries
*.TXT Find all entries with an extension of TXT
E*.* Find all entries starting with E
X?X.* Find all three letter file names starting and ending with
X

FONT #nbr
or
FONT #nbr, scale
or
FONT #nbr, [scale], reverse

CMM
MM

Selects a font for the video output. 'nbr' is the font number in the range
of 1 to 10. The # symbol is optional.
‘scale’ is the multiply factor in the range of 1 to 8 (eg, a scale of 2 will
double the size of a pixel in both the vertical and horizontal). Default is 1.
If ‘reverse’ is a number other than zero the font will be displayed in
reverse video. Default is no reverse.
There are three fonts built into MMBasic:
#1 is the standard font of 10 x 5 pixels containing the full ASCII set.
#2 is a larger font of 16 x 11 pixels also with the full ASCII set.
#3 is a jumbo font of 30 x 22 pixels consisting of the numbers zero to

nine and the characters plus, minus, space, comma and full stop.
Examples: 10 FONT #3, 2, 1 ‘ double scale and reverse video

10 FONT #3, ,0 ‘ reset to normal video
10 FONT #2 ‘ just select font #2

Font #1 with a scale of one and no reverse is the default on power up and
will be reinstated whenever control returns to the input prompt.
Other fonts can be loaded into memory: see the FONT LOAD command.

FONT LOAD file$ AS #nbr CMM
MM

Loads the font contained in 'file$' and install it as font 'nbr' which can be
any number between 3 and 10. The # symbol is optional.
Appendix E describes the format of the font file.

MMBasic Language Manual Page 23

FONT UNLOAD #nbr CMM
MM

Removes font 'nbr' and frees the memory used. The # symbol is
optional. You cannot unload the built-in fonts.

FOR counter = start TO
finish [STEP increment]

CMM
MM
DOS

Initiates a FOR-NEXT loop with the 'counter' initially set to 'start' and
incrementing in 'increment' steps (default is 1) until 'counter' equals
'finish'.
The ‘increment’ must be an integer, but may be negative.
See also the NEXT command.

FUNCTION xxx (arg1
[,arg2, …])
 <statements>
 <statements>
 xxx = <return value>
END FUNCTION

CMM
MM
DOS

Defines a callable function. This is the same as adding a new function to
MMBasic while it is running your program.
'xxx' is the function name and it must meet the specifications for naming
a variable. 'arg1', 'arg2', etc are the arguments or parameters to the
function.
To set the return value of the function you assign the value to the
function's name. For example:

FUNCTION SQUARE(a)
 SQUARE = a * a
END FUNCTION

Every definition must have one END FUNCTION statement. When this
is reached the function will return its value to the expression from which
it was called. The command EXIT FUNCTION can be used for an early
exit.
You use the function by using its name and arguments in a program just
as you would a normal MMBasic function. For example:

PRINT SQUARE(56.8)

When the function is called each argument in the caller is matched to the
argument in the function definition. These arguments are available only
inside the function.
Functions can be called with a variable number of arguments. Any
omitted arguments in the function's list will be set to zero or a null string.
Arguments in the caller's list that are a variable (ie, not an expression or
constant) will be passed by reference to the function. This means that
any changes to the corresponding argument in the function will also be
copied to the caller's variable.
You must not jump into or out of a function using commands like
GOTO, GOSUB, interrupts, etc. Doing so will have undefined side
effects.

GOSUB target CMM
MM
DOS

Initiates a subroutine call to the target, which can be a line number or a
label. The subroutine must end with RETURN.

GOTO target CMM
MM
DOS

Branches program execution to the target, which can be a line number or
a label.

IF expr THEN statement
or
IF expr THEN statement
ELSE statement

CMM
MM
DOS

Evaluates the expression ‘expr' and performs the THEN statement if it is
true or skips to the next line if false. The optional ELSE statement is the
reverse of the THEN test. This type of IF statement is all on one line.
The ‘THEN statement’ construct can be also replaced with:
GOTO linenumber | label’.

MMBasic Language Manual Page 24

IF expression THEN
<statements>
[ELSE
 <statements>]
[ELSEIF expression THEN
<statements>]
ENDIF

CMM
MM
DOS

Multiline IF statement with optional ELSE and ELSEIF cases and
ending with ENDIF. Each component is on a separate line.
Evaluates 'expression' and performs the statement(s) following THEN if
the expression is true or optionally the statement(s) following the ELSE
statement if false.
The ELSEIF statement (if present) is executed if the previous condition
is false and it starts a new IF chain with further ELSE and/or ELSEIF
statements as required.
One ENDIF is used to terminate the multiline IF.

INPUT ["prompt string$";]
list of variables

CMM
MM
DOS

Allows input from the keyboard to a list of variables. The input
command will prompt with a question mark (?).
The input must contain commas to separate each data item if there is
more than one variable.
For example, if the command is: INPUT a, b, c
And the following is typed on the keyboard: 23, 87, 66
Then a = 23 and b = 87 and c = 66
If the "prompt string$" is specified it will be printed before the question
mark. If the prompt string is terminated with a comma (,) rather than the
semicolon (;) the question mark will be suppressed.

INPUT #nbr,
list of variables

CMM
MM
DOS

Same as above except that the input is read from a file previously opened
for INPUT as ‘nbr’. See the OPEN command.

IRETURN CMM
MM

Returns from an interrupt. The next statement to be executed will be the
one that was about to be executed when the interrupt was detected.

KILL file$ CMM
MM
DOS

Deletes the file specified by ‘file$’.
Quote marks are required around a string constant and the extension, if
there is one, must be specified. Example: KILL “SAMPLE.DAT”

LET variable = expression CMM
MM
DOS

Assigns the value of 'expression' to the variable. LET is automatically
assumed if a statement does not start with a command.

LINE [(x1 , y1)] - (x2, y2)
[,c [,B[F]]]

CMM
MM

Draws a line or box on the video screen. x1,y1 and x2,y2 specify the
beginning and end points of a line. 'c' specifies the colour and defaults to
the default foreground colour if not specified. It can also be -1 to invert
the pixels.
(x1, y1) is optional and if omitted the last drawing point will be used.
The optional B will draw a box with the points (x1,y1) and (x2,y2) at
opposite corners. The optional BF will draw a box (as ,B) and fill the
interior.
See the section "Graphics and Working with Colour" for a definition of
the colours and graphics coordinates.

LINE INPUT [prompt$,]
string-variable$

CMM
MM
DOS

Reads entire line from the keyboard into ‘string-variable$’. If specified
the ‘prompt$’ will be printed first. Unlike INPUT, LINE INPUT will
read a whole line, not stopping for comma delimited data items.
A question mark is not printed unless it is part of ‘prompt$’.

MMBasic Language Manual Page 25

LINE INPUT #nbr,
string-variable$

CMM
MM
DOS

Same as above except that the input is read from a file previously opened
for INPUT as ‘nbr’. See the OPEN command.

LIST
LIST line
LIST -lastline
LIST firstline -
LIST firstline - lastline

CMM
MM
DOS

Lists all lines in a program line or a range of lines.
If –lastline is used it will start with the first line in the program. If
startline- is used it will list to the end of the program.

LOAD file$ CMM
MM
DOS

Loads a program called ‘file$’ from the current drive into program
memory.
Quote marks are required around a string constant.
Example: LOAD “TEST.BAS”
If an extension is not specified “.BAS” will be added to the file name.

LOADBMP file$ [, x, y] CMM
MM

Load a bitmapped image and display it on the video screen. ''file$' is the
name of the file and 'x' and 'y' are the screen coordinates for the top left
hand corner of the image. If the coordinates are not specified the image
will be drawn at the top left hand position on the screen.
If an extension is not specified “.BMP” will be added to the file name.
The file must use either a monochrome or 16 colours (4 bit) colour depth
and be in the uncompressed BMP format. Microsoft's Paint program is
recommended for creating suitable images.
See also SAVEBMP.

LOCAL variable [,
variables]

CMM
MM
DOS

Defines a list of variable names as local to the subroutine or function.
'variable' can be an array and the array will be dimensioned just as if the
DIM command had been used.
A local variable will only be visible within the procedure and will be
deleted (and the memory reclaimed) when the procedure returns. If the
local variable has the same name as a global variable (used before any
subroutines or functions were called) the global variable will be hidden
by the local variable while the procedure is executed.

LOOP [UNTIL expression] CMM
MM
DOS

Terminates a program loop: see DO.

MEMORY CMM
MM
DOS

List the amount of memory currently in use. For example:
 15kB (18%) Program (528 lines)
 23kB (28%) 52 Variables
 17kB (21%) General
 28kB (33%) Free
Program memory is cleared by the NEW command. Variable and the
general memory spaces are cleared by many commands (eg, NEW,
RUN, LOAD, etc) as well as the specific commands CLEAR and
ERASE.
General memory is used by fonts, file I/O buffers, etc.

MERGE file$ MM
DOS

Adds program lines from 'file$' to the program in memory. Unlike
LOAD, it does not clear the program currently in memory.

MMBasic Language Manual Page 26

MKDIR dir$ MM
DOS

Make, or create, the directory ‘dir$’ on the SD card.

MODE mode [, palette] CMM Sets the number of colours that can be displayed on the screen. 'mode'
can be:
1 Monochrome mode. 'palette' will select the colour to use and can be

0 to 7 representing the colours black to white. This mode provides
complete compatibility with programs written for the monochrome
Maximite

2 Four colour mode. 'palette' can be a number from 1 to 6 and will
select the range of colours available (see table below).

3 Eight colour mode. In this mode all eight colours (including black
and white) can be used. 'palette' can be supplied but will be ignored.

4 240x216 pixel resolution with all eight colours (including black and
white) available. 'palette' can be supplied but will be ignored.

In mode 2 the colours available in each palette are:
palette = 1 Black, Red, Green, Yellow
palette = 2 Black, Red, Blue, Purple
palette = 3 Black, Red, Cyan, White
palette = 4 Black, Green, Blue, Cyan
palette = 5 Black, Green, Purple, White
palette = 6 Black, Blue, Yellow, White

The MODE command allows the programmer to trade the number of
colours used and resolution against the amount of memory required by
the video driver. Modes 1 and 4 use the least amount of memory while
mode 3 uses the most.
Also see "Graphics and Working with Colour" at the start of this manual.

NAME old$ AS new$ CMM
MM
DOS

Rename a file or a directory from ‘old$’ to ‘new$’
Unlike the other commands that work with file names the NAME
command cannot accept a full pathname (with directories).

NEW CMM
MM
DOS

Deletes the program in memory and clears all variables.

NEXT [counter-variable] [,
counter-variable], etc

CMM
MM
DOS

NEXT comes at the end of a FOR-NEXT loop; see FOR.
The ‘counter-variable’ specifies exactly which loop is being operated on.
If no ‘counter-variable’ is specified the NEXT will default to the
innermost loop. It is also possible to specify multiple counter-variables
as in:
 NEXT x, y, z

ON nbr GOTO | GOSUB
target[,target, target,...]

CMM
MM
DOS

ON either branches (GOTO) or calls a subroutine (GOSUB) based on
the rounded value of 'nbr'; if it is 1, the first target is called, if 2, the
second target is called, etc. Target can be a line number or a label.

MMBasic Language Manual Page 27

OPEN fname$ FOR mode
AS [#]fnbr

CMM
MM
DOS

Opens a file for reading or writing.
‘fname’ is the filename (8 chars max) with an optional extension (3 chars
max) separated by a dot (.). It can be prefixed with a directory path. For
example: "B:\DIR1\DIR2\FILE.EXT".
‘mode’ is INPUT or OUTPUT or APPEND. INPUT will open the file
for reading and throw an error if the file does not exist. OUTPUT will
open the file for writing and will automatically overwrite any existing
file with the same name.
APPEND will also open the file for writing but it will not overwrite an
existing file; instead any writes will be appended to the end of the file. If
there is no existing file the APPEND mode will act the same as the
OUTPUT mode (i.e. the file is created then opened for writing). Note:
APPEND is not supported on the flash file system (drive A:).
‘fnbr’ is the file number (1 to 10). The # is optional. Up to 10 files can
be open simultaneously. The INPUT, LINE INPUT, PRINT, WRITE
and CLOSE commands as well as the EOF() and INPUT$() functions all
use ‘fnbr’ to identify the file being operated on.
See also OPTION ERROR and MM.ERRNO for error handling.

OPEN comspec$ AS [#]fnbr
or
OPEN comspec$ AS console

CMM
MM

Will open a serial port for reading and writing. Two ports are available
(COM1: and COM2:) and both can be open simultaneously. For a full
description with examples see Appendix A.
 ‘comspec$’ is the serial port specification and has the form:

“COMn: baud, buf, int, intlevel”
 with an optional ",FC" and/or “,OC” appended.

COM1: uses pin 15 for receive data and pin 16 for transmit data and if
flow control is specified pin 17 for RTS and pin 18 for CTS.
COM2: uses pin 19 for receive data and pin 20 for transmit data on the
monochrome Maximite and D0 (receive) and D1 (transmit) on the
Colour Maximite.
For the DuinoMite see the "DuinoMite MMBasic ReadMe.pdf"
document for details.
If the port is opened using ‘fnbr’ the port can be written to and read from
using any commands or functions that use a file number.
A serial port can be opened with “AS CONSOLE”. In this case any data
received will be treated the same as keystrokes received from the
keyboard and any characters sent to the video output will also be
transmitted via the serial port. This enables remote control of MMBasic
via a serial interface.

OPTION BASE 0
or
OPTION BASE 1

CMM
MM
DOS

Set the lowest value for array subscripts to either 0 or 1. The default is
0.
This must be used before any arrays are declared.

OPTION ERROR
CONTINUE
or
OPTION ERROR ABORT

CMM
MM
DOS

Set the treatment for errors in file input/output. The option CONTINUE
will cause MMBasic to ignore file related errors. The program must
check the variable MM.ERRNO to determine if and what error has
occurred.
The option ABORT sets the normal behaviour (ie, stop the program and
print an error message). The default is ABORT.
Note that this option only relates to errors reading from or writing to
drives A: and B:. It does not affect the handling of syntax and other
program errors.

MMBasic Language Manual Page 28

OPTION PROMPT string$ CMM
MM
DOS

Sets the command prompt to the contents of ‘string$’ (which can also be
an expression which will be evaluated when the prompt is printed).
For example:
 OPTION PROMPT “Ok “
or OPTION PROMPT TIME$ + “: “
or OPTION PROMPT CWD$ + “: “
Maximum length of the prompt string is 48 characters. The prompt is
reset to the default (“> “) on power up but you can automatically set it by
saving the following example program as “AUTORUN.BAS” on the
internal flash drive A:.
 10 OPTION PROMPT “My prompt: “
 20 NEW

OPTION Fnn string$ CMM
MM

Sets the programmable function key 'Fnn' to the contents of ‘string$’.
'Fnn' is the function key F1 to F12. Maximum string length is 12
characters.
‘string$’ can also be an expression which will be evaluated at the time of
running the OPTION command. This is most often used to append the
ENTER key (chr$(13)), or double quotes (chr$(34)).
For example:
 OPTION F1 "RUN" + CHR$(13)
 OPTION F6 "SAVE " + CHR$(34)
 OPTION F10 "ENDIF"
Normally these commands are included in an AUTORUN.BAS file (see
OPTION PROMPT for an example).

OPTION USB OFF
or
OPTION USB ON

CMM
MM

Turn the USB output off and on. This disables/enables the output from
the PRINT command from being sent out on the USB interface. It does
not affect the reception of characters from the USB interface.
Normally this is used when a program wants to separately display data
on the USB and video interfaces. This option is always reset to ON at
the command prompt.

OPTION VIDEO OFF
or
OPTION VIDEO ON

CMM
MM

VIDEO OFF prevents the output from the PRINT command from being
displayed on the video output (VGA or composite). The VIDEO ON
option will revert to the normal action.
Normally this is used when a program wants to separately display data
on the USB and video outputs. This option is always reset to ON at the
command prompt.

PAUSE delay CMM
MM
DOS

Halt execution of the running program for ‘delay’ mS.
This can be a fraction. For example, 0.2 is equal to 200 µS.
The maximum delay is 4294967295 mS (about 49 days).

PIN(pin) = value CMM
MM

For a ‘pin’ configured as digital output this will set the output to low
(‘value’ is zero) or high (‘value’ non-zero). You can set an output high
or low before it is configured as an output and that setting will be the
default output when the SETPIN command takes effect.
‘pin’ zero is a special case and will always control the LED on the front
panel of the Maximite, the yellow LED on the UBW32 or the green LED
on the DuinoMite. A ‘value’ of non-zero will turn the LED on, or zero
for off.
See the function PIN() for reading from a pin and the command SETPIN
for configuring it.

MMBasic Language Manual Page 29

PIXEL(x,y) = colour CMM
MM

Set a pixel on the VGA or composite screen to a colour or inverted (if
the value is -1). See the section "Graphics and Working with Colour"
for a definition of the colours and graphics coordinates.
See the function PIXEL(x,y) for obtaining the value of a pixel.

PLAYMOD file [, dur]
or
PLAYMOD STOP

CMM
MM

Play synthesised music or sound effects. 'file' specifies a file which must
be located on the internal drive A: and must be in the .MOD format.
'dur' specifies the duration in milliseconds that the audio will play for - if
not specified it will play until explicitly stopped or the program
terminates. The audio is synthesised in the background and is not
disturbed by the running program.
The command PLAYMOD STOP will immediately halt any music or
sound effect that is currently playing.
NOTE: The file needs to be located on the internal drive A: for
performance reasons, it will not play from the SD card.

POKE hiword, loword, val
or
POKE keyword, offset, val

CMM
MM
DOS

Will set a byte within the PIC32 virtual memory space.
The address is specified by ‘hiword’ which is the top 16 bits of the
address while ‘loword’ is the bottom 16 bits.
Alternatively 'keyword' can be used and 'offset' is the ±offset from the
address of the keyword. The keyword can be VIDEO (monochrome
Maximite video buffer) or RVIDEO, GVIDEO, BVIDEO (red, blue and
green video buffers on the Colour Maximite), PROGMEM (program
memory) or VARTBL (the variable table). The input keystroke buffer is
KBUF, the position of the head of the keystroke queue is KHEAD and
the tail is KTAIL (the buffer is 256 bytes long).
This command is for expert users only. The PIC32 maps all control
registers, flash (program) memory and volatile (RAM) memory into a
single address space so there is no need for INP or OUT commands.
The PIC32MX5XX/6XX/7XX Family Data Sheet lists the details of this
address space. Note that MMBasic stores most data (including video) as
32 bit integers and the PIC32 uses little endian format.
WARNING: No validation of the parameters is made and if you use this
facility to access an invalid memory address you will get an "internal
error" which causes the processor to reset and clear all memory.

PRINT expression
[[,;]expression] … etc

CMM
MM
DOS

Outputs text to the screen. Multiple expressions can be used and must be
separated by either a:

 Comma (,) which will output the tab character
 Semicolon (;) which will not output anything (it is just used to

separate expressions).
 Nothing or a space which will act the same as a semicolon.

A semicolon (;) at the end of the expression list will suppress the
automatic output of a carriage return/ newline at the end of a print
statement.
When printed, a number is preceded with a space if positive or a minus
(-) if negative but is not followed by a space. Integers (whole numbers)
are printed without a decimal point while fractions are printed with the
decimal point and the significant decimal digits. Large numbers (greater
than six digits) are printed in scientific format.
The function FORMAT$() can be used to format numbers. The function
TAB() can be used to space to a certain column and the string functions
can be used to justify or otherwise format strings.

MMBasic Language Manual Page 30

PRINT @(x, y) expression
Or
PRINT @(x, y, m)
expression

CMM
MM

Same as the PRINT command except that the cursor is positioned at the
coordinates x, y.
Example: PRINT @(150, 45) "Hello World"
The @ function can be used anywhere in a print command.
Example: PRINT @(150, 45) "Hello" @(150, 55) "World"
The @(x,y) function can be used to position the cursor anywhere on or
off the screen. For example PRINT @(-10, 0) "Hello" will only show
"llo" as the first two characters could not be shown because they were
off the screen.
The @(x,y) function will automatically suppress the automatic line wrap
normally performed when the cursor goes beyond the right screen
margin.
If 'm' is specified the mode of the video operation will be as follows:
 m = 0 Normal text (white letters, black background)
 m = 1 The background will not be drawn (ie, transparent)
 m = 2 The video will be inverted (black letters, white background)
 m = 5 Current pixels will be inverted (transparent background)

PRINT #nbr, expression
[[,;]expression] … etc

CMM
MM
DOS

Same as above except that the output is directed to a file previously
opened for OUTPUT or APPEND as ‘nbr’. See the OPEN command.

PULSE pin, width CMM
MM

Will generate a pulse on 'pin' with duration of 'width' mS.
'width' can be a fraction. For example, 0.01 is equal to 10 µS
This enables the generation of very narrow pulses.
The generated pulse is of the opposite polarity to the state of the I/O pin
when the command is executed. For example, if the output is set high
the PULSE command will generate a negative going pulse.
Notes: For a pulse of less than 1 mS the accuracy is ± 1 µS.

 For a pulse of 1 mS or more the accuracy is ± 0.5 mS.
 A pulse of more than 1 mS will run in the background.
 'pin' must be configured as an output.

PWM freq, ch1, ch2
or
PWM STOP

CMM
MM

Generate a pulse width modulated (PWM) output for driving analogue
circuits.
‘freq’ is the output frequency (between 20 Hz and 1 MHz) . The
frequency can be changed at any time by issuing a new PWM command.
The output will run continuously in the background while the program is
running and can be stopped using the PWM STOP command.
'ch1' and 'ch2' are the output duty cycles for channel 1 and 2 as a
percentage. If the percentage is close to zero the output will be a narrow
positive pulse, if 50 a square wave will be generated and if close to 100
it will be a very wide positive pulse. Both are optional and if not
specified will default to the previously used duty cycle for that channel.
The PWM output is generated on the PWM/sound connector and that
assumes that the connector has been wired for PWM output. The
frequency of the output is locked to the PIC32 crystal and is very
accurate and for frequencies below 100 KHz the duty cycle will be
accurate to 0.1%.
The original monochrome Maximite has only one PWM/sound output so
only 'ch1' can be set on that model.

QUIT DOS Will exit MMBasic and return control to the operating system.

MMBasic Language Manual Page 31

RANDOMIZE nbr CMM
MM
DOS

Seeds the random number generator with ‘nbr’. To generate a different
random sequence each time you must use a different value for ‘nbr’.
One good way to do this is use the TIMER function.
For example 100 RANDOMIZE TIMER

READ variable[, variable]... CMM
MM
DOS

Reads values from DATA statements and assigns these values to the
named variables. Variable types in a READ statement must match the
data types in DATA statements as they are read. See also DATA and
RESTORE.

REM string CMM
MM
DOS

REM allows remarks to be included in a program.
Note the Microsoft style use of the single quotation mark to denote
remarks is also supported and is preferred.

RENUMBER
or
RENUMBER first
or
RENUMBER first, incr
or
RENUMBER first, [incr],
start

CMM
MM
DOS

Renumber the program currently held in memory including all
references to line numbers in commands such as GOTO, GOSUB, ON,
etc.
‘first’ is the first number to be used in the new sequence. Default is 10.
‘incr’ is the increment for each line. Default is 10.
‘start’ is the line number in the old program where renumbering should
commence from. The default is the first line of the program.
This command will first check for errors that may disrupt the
renumbering process and it will only change the program in memory if
no errors are found. However, it is prudent to save the program before
running this command in case there are some errors that are not caught.

RESTORE CMM
MM
DOS

Resets the line and position counters for DATA and READ statements to
the top of the program file.

RETURN CMM
MM
DOS

RETURN concludes a subroutine called by GOSUB and returns to the
statement after the GOSUB.

RMDIR dir$ CMM
MM
DOS

Remove, or delete, the directory ‘dir$’ on the SD card.

RUN [line] [file$] CMM
MM
DOS

Executes the program in memory. If a line number is supplied then
execution will begin at that line, otherwise it will start at the beginning
of the program. Or, if a file name (file$) is supplied, the current program
will be erased and that program will be loaded from the current drive and
executed. This enables one program to load and run another.
Example: RUN “TEST.BAS”
If an extension is not specified “.BAS” will be added to the file name.

SAVE [file$] CMM
MM
DOS

Saves the program in the current working directory as ‘file$’. The file
name is optional and if omitted the last filename used in SAVE, LOAD
or RUN will be automatically used.
Example: SAVE “TEST.BAS”
If an extension is not specified “.BAS” will be added to the file name.

MMBasic Language Manual Page 32

SAVEBMP file$ CMM
MM

Saves the current VGA or composite screen as a BMP file in the current
working directory on the current drive. The Colour Maximite will save
the file as a 16 colour (4 bit) file.
Example: SAVEBMP “IMAGE.BMP”
If an extension is not specified “.BMP” will be added to the file name.
Note that Windows 7 Paint has trouble displaying monochrome images.
This appears to be a bug in Paint as all other software tested (including
Windows XP Paint) can display the image without fault.
See also LOADBMP.

SCANLINE colour, start
[, end]

CMM This command can be used to set the colour of individual horizontal scan
lines on the VGA monitor when in MODE 1,7 (monochrome with white
foreground). This applies to all video output displayed before and after
the SCANLINE command.
'colour' can be any colour specified by name or number from 0 to 7.
'start' and 'end' specify the range of scan lines to set. If 'end' is not
specified only one line will be set. Multiple calls to SCANLINE can be
used to set the colour of other scan lines or to change the colour of lines
already set (ie, the settings accumulate).
This command is valid only when the colour mode is set to MODE 1,7
(monochrome with the colour set to white). All settings made by
SCANLINE are automatically cancelled whenever the MODE command
is used or when MMBasic returns to the command prompt.
See the section "Graphics and Working with Colour" for more details.

SETPIN pin, cfg CMM
MM

Will configure the external I/O ‘pin’ according to ‘cfg’.
The original Maximite has 20 I/O pins numbered 1 to 20, the Colour
Maximite adds another 20 I/O pins on the Arduino connector. These are
labelled D0 to D13 and A0 to A5.
The possible configurations are:

0 Not configured or inactive
1 Analog input (pins 1 to 10, A0 to A5)
2 Digital input (all pins)
3 Frequency input (pins 11 to 14)
4 Period input (pins 11 to 14)
5 Counting input (pins 11 to 14)
8 Digital output (all pins)
9 Open collector digital output (pins 11 to 20, D0 to D13)

In this mode the function PIN() will also return the output
value.

Pins 11 to 20 and D0 to D13 can accept 5V inputs and 5V pull-ups in
open collector mode. The remainder have a maximum input voltage of
3.3V.
For the DuinoMite see "DuinoMite MMBasic ReadMe.pdf"
See the function PIN() for reading inputs and the statement PIN()= for
outputs. See the command below if an interrupt is configured.

MMBasic Language Manual Page 33

SETPIN pin, cfg , target CMM
MM

Will configure ‘pin’ to generate an interrupt according to ‘cfg’:
0 Not configured or inactive
6 Interrupt on low to high input (pins 1 to 20, D0 to D8)
7 Interrupt on high to low input (pins 1 to 20, D0 to D8)

The starting line number of the interrupt routine is specified in the third
parameter ‘target', which can be a line number or label.
This mode also configures the pin as a digital input so the value of the
pin can always be retrieved using the function PIN().
See also IRETURN to return from the interrupt.

SETTICK period, target CMM
MM

This will setup a periodic interrupt (or “tick”). The time between
interrupts is ‘period’ milliseconds and ‘target' is the line number or label
of the interrupt routine. See also IRETURN to return from the interrupt.
The period can range from 1 to 4294967295 mSec (about 49 days).
This interrupt can be disabled by setting ‘target’ to zero
(ie, SETTICK 0, 0).

SPRITE LOAD file
or
SPRITE ON n, x, y
or
SPRITE MOVE n, x, y
or
SPRITE OFF n
or
SPRITE UNLOAD

CMM
MM

Load and manipulate sprites on the screen. Sprites are 16x16 pixel
objects that can be moved about on the screen without erasing or
disturbing text or other underlying graphics. This command is mostly
used in animated games.
'n' is the sprite number, 'x' and 'y' are the sprite's coordinates on the
screen.
SPRITE LOAD will load a sprite file into memory. This file defines the
graphic images of one or more sprites. See Appendix H for details.
SPRITE ON will display an individual sprite contained in the sprite file.
SPRITE OFF will remove the sprite from the screen and restore the
background graphics that was obscured when the sprite was turned on.
SPRITE MOVE will move the sprite to a new location and restore the
background at the old location.
SPRITE UNLOAD will disable the sprites, unload the file and reclaim
the memory used.
The sprite file can contain many individual sprites which can be
simultaneously displayed and independently manipulated at the same
time. The number of sprites is limited only by the available memory.
See the section "Game Playing Features" for more details.

SUB xxx (arg1 [,arg2, …])
 <statements>
 <statements>
END SUB

CMM
MM
DOS

Defines a callable subroutine. This is the same as adding a new
command to MMBasic while it is running your program.
'xxx' is the subroutine name and it must meet the specifications for
naming a variable. 'arg1', 'arg2', etc are the arguments or parameters to
the subroutine.
Every definition must have one END SUB statement. When this is
reached the program will return to the next statement after the call to the
subroutine. The command EXIT SUB can be used for an early exit.
You use the subroutine by using its name and arguments in a program
just as you would a normal command. For example: MySub a1, a2
When the subroutine is called each argument in the caller is matched to
the argument in the subroutine definition. These arguments are available
only inside the subroutine. Subroutines can be called with a variable
number of arguments. Any omitted arguments in the subroutine's list
will be set to zero or a null string.
Arguments in the caller's list that are a variable (ie, not an expression or

MMBasic Language Manual Page 34

constant) will be passed by reference to the subroutine. This means that
any changes to the corresponding argument in the subroutine will also be
copied to the caller's variable and therefore may be accessed after the
subroutine has ended.
Brackets around the argument list in both the caller and the definition are
optional.

SYSTEM command$ DOS Submit 'command$' to the operating system.
It can be any command recognised by the command window in
Windows XP/Vista/7. The available commands are listed here:
http://ss64.com/nt
For example, this will set the window to blue lettering on a yellow
background: SYSTEM "COLOR 1E"
Note that the command is executed in a different instance of the
command processor to MMBasic so some commands (like "CD ..") will
have no effect.

TIME$ = “HH:MM:SS”
or
TIME$ = “HH:MM”
or
TIME$ = “HH”

CMM
MM

Sets the time of the internal clock. MM and SS are optional and will
default to zero if not specified. For example TIME$ = “14:30” will set
the clock to 14:30 with zero seconds.
Normally the time is set to “00:00:00” on power up. If the real time
clock option is fitted to the Colour Maximite the current time will be
automatically set using that facility.

TIMER = msec CMM
MM
DOS

Resets the timer to a number of milliseconds. Normally this is just used
to reset the timer to zero but you can set it to any positive integer.
See the TIMER function for more details.

TONE left [, right [, dur]]
or
TONE STOP

CMM
MM

Generates a continuous sine wave on the sound output. 'left' and 'right'
are the frequencies to use for the left and right channels. The tone plays
in the background (the program will continue running after this
command) and 'dur' specifies the number of milliseconds that the tone
will sound for. If the duration is not specified the tone will continue
until explicitly stopped or the program terminates.
The command TONE STOP will immediately halt the tone output.
The frequency can be from 1Hz to 20KHz and is very accurate (it is
based on the PIC32 crystal oscillator). The frequency can be changed at
any time by issuing a new TONE command.
In the monochrome Maximite and compatibles only the left frequency
will play but a dummy or empty value is still required for the right
channel.

TROFF CMM
MM
DOS

Turns the trace facility off; see TRON.

TRON CMM
MM
DOS

Turns on the trace facility. This facility will print each line number in
square brackets as the program is executed. This is useful in debugging
programs.

http://ss64.com/nt

MMBasic Language Manual Page 35

XMODEM SEND file$
or
XMODEM RECEIVE file$

CMM
MM

Transfers a file to or from a remote computer using the XModem
protocol. The transfer is done over the USB connection or, if a serial
port is opened as console, over that serial port.
‘file$’ is the file (on the SD card or internal flash) to be sent or received.
The XModem protocol requires a cooperating software program running
on the remote computer and connected to its serial port. It has been
tested on Tera Term running on Windows and it is recommended that
this be used. After running the XMODEM command in MMBasic
select:
 File -> Transfer -> XMODEM -> Receive/Send
 from the Tera Term menu to start the transfer.
The transfer can take up to 15 seconds to start and if the XMODEM
command fails to establish communications it will return to the
MMBasic prompt after 60 seconds.
Download Tera Term from http://ttssh2.sourceforge.jp/

http://ttssh2.sourceforge.jp/

MMBasic Language Manual Page 36

Functions
The centre column specifies the platform (CMM is the Colour Maximite, MM is the monochrome Maximite
and DuinoMite, DOS is the Windows version). Square brackets indicate that the parameter or characters are
optional.

ABS(number) CMM
MM
DOS

Returns the absolute value of the argument 'number' (ie, any negative
sign is removed and the positive number is returned).

ASC(string$) CMM
MM
DOS

Returns the ASCII code for the first letter in the argument ‘string$’.

ATN(number) CMM
MM
DOS

Returns the arctangent value of the argument 'number' in radians.

BIN$(number) CMM
MM
DOS

Returns a string giving the binary (base 2) value for the 'number'.

CHR$(number) CMM
MM
DOS

Returns a one-character string consisting of the character corresponding
to the ASCII code indicated by argument 'number'.

CINT(number) CMM
MM
DOS

Round numbers with fractional portions up or down to the next whole
number or integer.
For example, 45.47 will round to 45
 45.57 will round to 46
 -34.45 will round to -34
 -34.55 will round to -35
See also INT() and FIX().

CLR$()
or
CLR$(fg)
or
CLR$(fg, bg)

CMM Returns a string containing embedded codes to select colours in a string.
'fg' is the foreground colour and 'bg' is the background colour. If no
parameters are specified both the foreground and background colours
will be reset to the defaults set by the last COLOUR command.
Example, this will display yellow letters on a red background:

PRINT CLR$(YELLOW,RED) " ALARM "

This function simply generates a two character string where the first
character is the number 128 plus the foreground colour number and the
second character is the number 192 plus the background colour number.

COS(number) CMM
MM
DOS

Returns the cosine of the argument 'number' in radians.

CWD$ CMM
MM
DOS

Returns the current working directory as a string.

MMBasic Language Manual Page 37

DATE$ CMM
MM
DOS

Returns the current date based on MMBasic’s internal clock as a string
in the form "DD-MM-YYYY". For example, “28-07-2012”.
The internal clock/calendar will keep track of the time and date
including leap years. To set the date use the command DATE$ =.

DEG(radians) CMM
MM
DOS

Converts 'radians' to degrees.

DIR$(fspec, type)
or
DIR$(fspec)
or
DIR$()

CMM
MM

Will search an SD card for files and return the names of entries found.
'fspec' is a file specification using wildcards the same as used by the
FILES command. Eg, "*.*" will return all entries, "*.TXT" will return
text files.
'type' is the type of entry to return and can be one of:

VOL Search for the volume label only
DIR Search for directories only
FILE Search for files only (the default if 'type' is not specified)

The function will return the first entry found. To retrieve subsequent
entries use the function with no arguments. ie, DIR$(). The return of
an empty string indicates that there are no more entries to retrieve.
This example will print all the files in a directory:

f$ = DIR$(*.*, FILES)
DO WHILE f$ <> ""
 PRINT f$
 f$ = DIR$()
LOOP

This function only operates on the SD card and you must change to the
required directory before invoking it.

EOF([#]nbr) CMM
MM
DOS

Will return true if the file previously opened for INPUT with the file
number ‘nbr’ is positioned at the end of the file.
If used on a file number opened as a serial port this function will return
true if there are no characters waiting in the receive buffer.
The # is optional. Also see the OPEN, INPUT and LINE INPUT
commands and the INPUT$ function.

EXP(number) CMM
MM
DOS

Returns the exponential value of 'number'.

FIX(number) CMM
MM
DOS

Truncate a number to a whole number by eliminating the decimal point
and all characters to the right of the decimal point.
For example 9.89 will return 9 and -2.11 will return -2.
The major difference between FIX and INT is that FIX provides a true
integer function (ie, does not return the next lower number for negative
numbers as INT() does). This behaviour is for Microsoft compatibility.
See also CINT() .

FORMAT$(nbr [, fmt$]) CMM
MM
DOS

Will return a string representing ‘nbr’ formatted according to the
specifications in the string ‘fmt$’.
The format specification starts with a % character and ends with a letter.
Anything outside of this construct is copied to the output as is.
The structure of a format specification is:

MMBasic Language Manual Page 38

 % [flags] [width] [.precision] type
Where ‘flags’ can be:
 - Left justify the value within a given field width
 0 Use 0 for the pad character instead of space
 + Forces the + sign to be shown for positive numbers
 space Causes a positive value to display a space for the sign.

Negative values still show the – sign
‘width’ is the minimum number of characters to output, less than this the
number will be padded, more than this the width will be expanded.
‘precision’ specifies the number of fraction digits to generate with an e,
or f type or the maximum number of significant digits to generate with a
g type. If specified, the precision must be preceded by a dot (.).

‘type’ can be one of:
 g Automatically format the number for the best presentation.
 f Format the number with the decimal point and following

digits
 e Format the number in exponential format
If uppercase G or F is used the exponential output will use an uppercase
E. If the format specification is not specified “%g” is assumed.
Examples:

format$(45) will return 45
format$(45, “%g”) will return 45
format$(24.1, “%g”) will return 24.1
format$(24.1,”%f”) will return 24.100000
format$(24.1, “%e”) will return 2.410000e+01
format$(24.1,"%09.3f") will return 00024.100
format$(24.1,"%+.3f") will return +24.100
format$(24.1,"**%-9.3f**") will return **24.100 **

HEX$(number) CMM
MM
DOS

Returns a string giving the hexadecimal (base 16) value for the 'number'.

INKEY$ CMM
MM
DOS

Checks the keyboard and USB input buffers and, if there is one or more
characters waiting in the queue, will remove the first character and
return it as a single character in a string.
If the input buffer is empty this function will immediately return with an
empty string (ie, "").

INPUT$(nbr, [#]fnbr) CMM
MM
DOS

Will return a string composed of ‘nbr’ characters read from a file
previously opened for INPUT with the file number ‘fnbr’. This function
will read all characters including carriage return and new line without
translation.
When reading from a serial communications port this will return as
many characters as are waiting in the receive buffer up to ‘nbr’. If there
are no characters waiting it will immediately return with an empty string.
The # is optional. Also see the OPEN command.

INSTR([start-position,]
string-searched$, string-
pattern$)

CMM
MM
DOS

Returns the position at which 'string-pattern$' occurs in 'string-
searched$', beginning at 'start-position'.

MMBasic Language Manual Page 39

INT(number) CMM
MM
DOS

Truncate an expression to the next whole number less than or equal to
the argument. For example 9.89 will return 9 and -2.11 will return -3.
This behaviour is for Microsoft compatibility, the FIX() function
provides a true integer function.
See also CINT() .

LEFT$(string$, number-
of-chars)

CMM
MM
DOS

Returns a substring of ‘string$’ with ‘number-of-chars’ from the left
(beginning) of the string.

LEN(string$) CMM
MM
DOS

Returns the number of characters in 'string$'.

LOC([#]nbr) CMM
MM

Will return the number of bytes waiting in the receive buffer of a serial
port (ie, COM1: or COM2:) that has been opened as #nbr. The # is
optional.

LOF([#]nbr) CMM
MM

Will return the space (in bytes) remaining in the transmit buffer of a
serial port (ie, COM1: or COM2:) that has been opened as #nbr. The #
is optional.

LOG(number) CMM
MM
DOS

Returns the natural logarithm of the argument 'number'.

LCASE$(string$) CMM
MM
DOS

Returns ‘string$’ converted to lowercase characters.

MID$(string$, start-
position-in-string[, number-
of-chars])

CMM
MM
DOS

Returns a substring of ‘string$’ beginning at ‘start-position-in-string’
and continuing for ‘number-of-chars’ bytes. If ‘number-of-chars’ is
omitted the returned string will extend to the end of ‘string$’

OCT$(number) CMM
MM
DOS

Returns a string giving the octal (base 8) representation of 'number'.

PEEK(hiword, loword)
or
PEEK(keyword, ±offset)

CMM
MM
DOS

Will return a byte within the PIC32 virtual memory space.
The address is specifies by ‘hiword’ which is the top 16 bits of the
address while ‘loword’ is the bottom 16 bits.
Alternatively 'keyword' can be used and 'offset' is the ±offset from the
address of the keyword. The keyword can be VIDEO (monochrome
Maximite video buffer) or RVIDEO, GVIDEO, BVIDEO (red, blue and
green video buffers on the Colour Maximite), PROGMEM (program
memory) or VARTBL (the variable table). The input keystroke buffer is
KBUF, the position of the head of the keystroke queue is KHEAD and
the tail is KTAIL (the buffer is 256 bytes long).
See the POKE command for notes and warnings related to memory
access.

PI CMM
MM
DOS

Returns the value of pi.

MMBasic Language Manual Page 40

PIN(pin) CMM
MM

Returns the value on the external I/O ‘pin’. Zero means digital low, 1
means digital high and for analogue inputs it will return the measured
voltage as a floating point number.
Frequency inputs will return the frequency in Hz (maximum 200 kHz).
A period input will return the period in milliseconds while a count input
will return the count since reset (counting is done on the positive rising
edge). The count input can be reset to zero by resetting the pin to
counting input (even if it is already so configured).
‘pin’ zero (ie, = PIN(0)) is a special case which will always return the
state of the bootload or program push button on the PC board (non zero
means that the button is down).
Also see the SETPIN and PIN() = commands.

POS CMM
MM
DOS

Returns the current cursor position in the line in characters.

PIXEL(x, y) CMM
MM

Returns the colour of a pixel on the VGA or composite screen. See the
section "Graphics and Working with Colour" for a definition of the
colours and graphics coordinates..
See the statement PIXEL(x,y) = for setting the value of a pixel.

RAD(degrees) CMM
MM
DOS

Converts 'degrees' to radians.

RIGHT$(string$, number-
of-chars)

CMM
MM
DOS

Returns a substring of ‘string$’ with ‘number-of-chars’ from the right
(end) of the string.

RND(number) CMM
MM
DOS

Returns a pseudo-random number in the range of 0 to 0.99999. The
'number' value is ignored if supplied. The RANDOMIZE command
reseeds the random number generator.

SGN(number) CMM
MM
DOS

Returns the sign of the argument 'number', +1 for positive numbers, 0 for
0, and -1 for negative numbers.

SIN(number) CMM
MM
DOS

Returns the sine of the argument 'number' in radians.

SPACE$(number) CMM
MM
DOS

Returns a string of blank spaces 'number' bytes long.

MMBasic Language Manual Page 41

SPI(rx, tx, clk[, data[,
speed]])

CMM
MM

Sends and receives a byte using the SPI protocol with MMBasic as the
master (ie, it generates the clock).
‘rx’ is the pin number for the data input (MISO)
‘tx’ is the pin number for the data output (MOSI)
‘clk’ is the pin number for the clock generated by MMBasic (CLK)
‘data’ is optional and is an integer representing the data byte to send
over the data output pin. If it is not specified the ‘tx’ pin will be held
low.
‘speed’ is optional and is the speed of the clock. It is a single letter
either H, M or L where H is 500 kHz, M is 50 kHz and L is 5 kKHz.
Default is H.
See Appendix D for a full description.

SQR(number) CMM
MM
DOS

Returns the square root of the argument 'number'.

STR$(number) CMM
MM
DOS

Returns a string in the decimal (base 10) representation of 'number'.

STRING$(number, ascii-
value|string$)

CMM
MM
DOS

Returns a string 'number' bytes long consisting of either the first
character of string$ or the character representing the ASCII value ascii-
value.

TAB(number) CMM
MM
DOS

Outputs spaces until the column indicated by 'number' has been reached.

TAN(number) CMM
MM
DOS

Returns the tangent of the argument 'number' in radians.

TIME$ CMM
MM
DOS

Returns the current time based on MMBasic's internal clock as a string
in the form "HH:MM:SS" in 24 hour notation. For example,
“14:30:00”.
To set the current time use the command TIME$ = .

TIMER CMM
MM
DOS

Returns the elapsed time in milliseconds (eg, 1/1000 of a second) since
reset. If not specifically reset this count will wrap around to zero after
49 days.
The timer is reset to zero on power up and you can also reset it by using
TIMER as a command.

UCASE$(string$) CMM
MM
DOS

Returns ‘string$’ converted to uppercase characters.

VAL(string$) CMM
MM
DOS

Returns the numerical value of the ‘string$’. If 'string$' is an invalid
number the function will return zero.
This function will recognise the &H prefix for a hexadecimal number,
&O for octal and &B for binary.

MMBasic Language Manual Page 42

Obsolete Commands and Functions
These commands and functions are mostly included to assist in converting programs written for Microsoft
BASIC. For new programs the corresponding commands in MMBasic should be used.

The centre column specifies the platform (CMM is the Colour Maximite, MM is the monochrome Maximite
and DuinoMite, DOS is the Windows version). Square brackets indicate that the parameter or characters are
optional.

IF condition THEN linenbr CMM
MM
DOS

For Microsoft compatibility a GOTO is assumed if the THEN statement
is followed by a number. A label is invalid in this construct.
New programs should use: IF condition THEN GOTO linenbr | label

LOCATE x, y CMM
MM

Positions the cursor to a location in pixels and the next PRINT command
will place its output at this location.
This construct is included for Microsoft compatibility. New programs
should use the PRINT @(x,y) construct (see the PRINT command).

PRESET (x, y)

PSET (x, y)

CMM
MM

Turn off (PRESET) or on (PSET) a pixel on the video screen.
These statements are included for Microsoft compatibility. New
programs should use the PIXEL(x,y) = statement.

SOUND freq
or
SOUND freq, dur

CMM
MM

Generate a single tone of ‘freq’ (between 20 Hz and 1 MHz) for ‘dur’
milliseconds. The sound is played in the background and does not stop
program execution.
If 'dur' is not specified the sound will play forever until turned off. If
‘dur’ is zero, any active SOUND statement is turned off.
The command has been replaced with the TONE command that
generates a pure sine wave (not a square wave).

SPC(number) CMM
MM
DOS

This function returns a string of blank spaces 'number' bytes long. It is
similar to the SPACE$() function and is only included for Microsoft
compatibility.

WHILE expression

WEND

CMM
MM
DOS

WHILE initiates a WHILE-WEND loop.
The loop ends with WEND, and execution reiterates through the loop as
long as the 'expression' is true.
This construct is included for Microsoft compatibility. New programs
should use the DO WHILE … LOOP construct.

WRITE [#nbr,] expression
[,expression] …

CMM
MM
DOS

Outputs the value of each ‘expression’ separated by commas (,). If
‘expression’ is a number it is outputted without preceding or trailing
spaces. If it is a string it is surrounded by double quotes (“). The list is
terminated with a new line.
If ‘#nbr’ is specified the output will be directed to a file previously
opened for OUTPUT or APPEND as ‘#nbr’. See the OPEN command.
WRITE can be replaced by the PRINT command.

MMBasic Language Manual Page 43

Appendix A
Serial Communications
Maximite family only (not DOS or Generic PIC32 versions).
Two serial ports are available for asynchronous serial communications (four on the DuinoMite). They are
labelled COM1:, COM2:, etc and are opened in a manner similar to opening a file. After being opened they will
have an associated file number (like an opened disk file) and you can use any commands that operate with a file
number to read and write to/from the serial port. A serial port is also closed using the CLOSE command.
The following is an example:
OPEN “COM1:4800” AS #5 ‘ open the first serial port with a speed of 4800 baud
PRINT #5, “Hello” ‘ send the string “Hello” out of the serial port
Data$ = INPUT$(20, #5) ‘ get up to 20 characters from the serial port
CLOSE #5 ‘ close the serial port

The OPEN Command
A serial port is opened using the command:
OPEN comspec$ AS #fnbr

The transmission format is fixed at 8 data bits, no parity and one stop bit.
‘fnbr’ is the file number to be used. It must be in the range of 1 to 10. The # is optional.
‘comspec$’ is the communication specification and is a string (it can be a string variable) specifying the serial
port to be opened and optional parameters.
It has the form “COMn: baud, buf, int, intlevel, FC, OC” where:

 ‘n’ is the serial port number for either COM1: or COM2: (plus COM3: and COM4: on the DuinoMite).
 ‘baud’ is the baud rate, either 19200, 9600, 4800, 2400, 1200, 600, 300 bits per second. For COM3 and

COM4 (DuinoMite only) it can be any number from 300 to 460800. Default is 9600.
 ‘buf’ is the buffer sizes in bytes. Two of these buffers will be allocated from memory, one for transmit

and one for receive. The default size is 256 bytes.
 ‘int’ is the line number or label of an interrupt routine to be invoked when the serial port has received

some data. The default is no interrupt.
 ‘intlevel’ is the number of characters that must be waiting in the receive queue before the receive

interrupt routine is invoked. The default is 1 character.
All parameters except the serial port name (COMn:) are optional. If any one parameter is left out then all the
following parameters must also be left out and the defaults will be used.
Two options can be optionally added, these are FC and OC. They must be at the end of ‘comspec’ and, if both
are specified, must be in this order.

 ‘FC’ will enable hardware flow control. Flow control can only be specified on COM1: and it enables
two extra signals, Request To Send (receive flow control) and Clear To Send (transmit flow control).
Default is no flow control.

 ‘OC’ will force the output pins (Tx and optionally RTS) to be open collector and can be used on both
COM1: and COM2:. The default is normal (0 to 3.3V) output.

Examples
Opening a serial port using all the defaults:
OPEN “COM2:” AS #2
Opening a serial port specifying only the baud rate (4800 bits per second):
OPEN “COM2:4800” AS #1

Opening a serial port specifying the baud rate (9600 bits per second) and buffer size (1KB) but no flow control:
OPEN “COM1:9600, 1024” AS #8

The same as above but with receive flow control (RTS) and transmit flow control (CTS) enabled:
OPEN “COM1:9600, 1024, FC” AS #8

An example specifying everything including an interrupt, an interrupt level, flow control and open collector:
OPEN “COM1:19200, 1024, ComIntLabel, 256, FC, OC” AS #5

MMBasic Language Manual Page 44

Input/Output Pin Allocation
COM1: uses pin 15 for receive data (data in) and pin 16 for transmit data (data out). If flow control is specified
pin 17 will be used for RTS (receive flow control – it is an output) and pin 18 will be CTS (transmit flow
control – it is an input).
COM2: uses pin 19 for receive data (data in) and pin 20 for transmit data (data out) in the monochrome
Maximite and D0 for receive data and pin D1 for transmit data on the Colour Maximite.
For the DuinoMite see the "DuinoMite MMBasic ReadMe.pdf" document for details.
When a serial port is opened the pins used by the port are automatically set to input or output as required and
the SETPIN and PIN commands are disabled for the pins. When the port is closed (using the CLOSE
command) all pins used by the serial port will be set to a not-configured state and the SETPIN command can
then be used to reconfigure them.
The signal polarity is standard for devices running at TTL voltages (not RS232). Idle is voltage high, the start
bit is voltage low, data uses a high voltage for logic 1 and the stop bit is voltage high. The flow control pins
(RTS and CTS) use a low voltage to signal stop sending data and high as OK to send. These signal levels allow
you to directly connect to devices like the EM-408 GPS module (which uses TTL voltage levels).

Reading and Writing
Once a serial port has been opened you can use any commands or functions that use a file number to write and
read from the port. Generally the PRINT command is the best method for transmitting data and the INPUT$()
function is the most convenient way of getting data that has been received. When using the INPUT$() function
the number of characters specified will be the maximum number of characters returned but it could be less if
there are less characters in the receive buffer. In fact the INPUT$() function will immediately return an empty
string if there are no characters available in the receive buffer.
The LOC() function is also handy; it will return the number of characters waiting in the receive buffer (ie, the
number characters that can be retrieved by the INPUT$() function). The EOF() function will return true if there
are no characters waiting. The LOF() function will return the space (in characters) remaining in the transmit
buffer.
When outputting to a serial port (ie, using PRINT #n, data) the command will pause if the output buffer is full
and wait until there is sufficient space to place the new data in the buffer before returning. If the receive buffer
overflows with incoming data the serial port will automatically discard the oldest data to make room for the
new data.
Serial ports can be closed with the CLOSE command. This will discard any characters waiting in the buffers,
return the buffer memory to the memory pool and set all pins used by the port to the not configured state. A
serial port is also automatically closed when commands such as RUN and NEW are issued.

Interrupts
The interrupt routine (if specified) will operate the same as a general interrupt on an external I/O pin (see
page 4 for a description) and must be terminated with an IRETURN command to return control to the main
program when completed.
When using interrupts you need to be aware that it will take some time for MMBasic to respond to the interrupt
and more characters could have arrived in the meantime, especially at high baud rates. So, for example, if you
have specified the interrupt level as 200 characters and a buffer of 256 characters then quite easily the buffer
will have overflowed by the time the interrupt routine can read the data. In this case the buffer should be
increased to 512 characters or more.

Opening a Serial Port as the Console
A serial port can be opened as the console for MMBasic. The command is:
OPEN comspec AS CONSOLE

In this case any characters received from the serial port will be treated the same as keystrokes received from the
keyboard and any characters sent to the video output will also be transmitted via the serial port. This enables a
user with a terminal at the end of the serial link to exercise remote control of MMBasic. For example, via a
modem.
Note that only one serial port can be opened “AS CONSOLE” at a time and it will remain open until explicitly
closed using the CLOSE CONSOLE command. It will not be closed by commands such as NEW and RUN.

MMBasic Language Manual Page 45

Appendix B
I2C Communications
Maximite family only (not DOS or Generic PIC32 versions).
The Inter Integrated Circuit (I2C) bus was developed by the electronics giant Philips for the transfer of data
between integrated circuits. It has been adopted by many manufacturers and can be used to communicate with
many devices including memories, clocks, displays, speech module, etc. Using the I2C bus is complicated and
if you do not need to communicate with these devices you can safely ignore this section.
This implementation was developed by Gerard Sexton and fully supports master and slave operation, 10 bit
addressing, address masking and general call, as well as bus arbitration (ie, bus collisions in a multi-master
environment).
In the master mode, there is a choice of 2 modes: interrupt and normal. In normal mode, the I2C send and
receive commands will not return until the command completes or a timeout occurs (if the timeout option has
been specified). In interrupt mode, the send and receive commands return immediately allowing other
MMBasic commands to be executed while the send and receive are in progress. When the send/receive
transactions have completed, an MMBasic interrupt will be executed. This allows you to set a flag or perform
some other processing when this occurs.
When enabled the I2C function will take control of the external I/O pins 12 and 13 and override SETPIN and
PIN() commands for these pins. Pin 12 becomes the I2C data line (SDA) and pin 13 the clock (SCL). Both of
these pins should have external pullup resistors installed (typical values are 10KΩ for 100KHz or 2KΩ for 400
kHz). For the DuinoMite see the "DuinoMite MMBasic ReadMe.pdf" document for details.
Be aware that when running the I2C bus at above 150 kHz the cabling between the devices becomes important.
Ideally the cables should be as short as possible (to reduce capacitance) and also the data and clock lines should
not run next to each other but have a ground wire between them (to reduce crosstalk). If the data line is not
stable when the clock is high, or the clock line is jittery, the I2C peripherals can get "confused" and end up
locking the bus (normally by holding the clock line low). If you do not need the higher speeds then operating at
100 kHz is the safest choice.
There are four commands for master mode; I2CEN, I2CDIS, I2CSEND and I2CRCV. For slave mode the
commands are; I2CSEN, I2CSDIS, I2CSSEND and I2CSRCV. The master and slave modes can be enabled
simultaneously; however, once a master command is in progress, the slave function will be "idle" until the
master releases the bus. Similarly, if a slave command is in progress, the master commands will be unavailable
until the slave transaction completes.
Both the master and slave modes use an MMBasic interrupt to signal a change in status. These interrupt
routines operate the same as a general interrupt on an external I/O pin (see page 4 for a description) and must
be terminated with an IRETURN command to return control to the main program when completed.
The automatic variable MM.I2C will hold the result of a command or action.

I2C Master Mode Commands

I2CEN speed, timeout [,
int]

Enables the I2C module in master mode.
‘speed’ is a value between 10 and 400 (for bus speeds 10 kHz to 400 kHz).
‘timeout’ is a value in milliseconds after which the master send and receive
commands will be interrupted if they have not completed. The minimum
value is 100. A value of zero will disable the timeout (though this is not
recommended).
‘int’ is optional. It specifies the line number or label of an interrupt routine
to be run when the send or receive command completes. If this is not
supplied, the send and receive command will only return when they have
completed or timed out. If it is supplied then the send and receive will
complete immediately and the command will execute in the background.

I2CDIS Disables the slave I2C module and returns the external I/O pins 12 and 13 to
a “not configured” state. Then can then be configured as per normal using
SETPIN. It will also send a stop if the bus is still held.

MMBasic Language Manual Page 46

I2CSEND addr, option,
sendlen, senddata [,sendata
....]

Send data to the I2C slave device.
‘addr’ is the slave i2c address.
‘option’ is a number between 0 and 3

1 = keep control of the bus after the command (a stop condition will not
be sent at the completion of the command)

2 = treat the address as a 10 bit address
3 = combine 1 and 2 (hold the bus and use 10 bit addresses).

‘sendlen’ is the number of bytes to send.
‘senddata’ is the data to be sent - this can be specified in various ways (all
values sent will be between 0 and 255):

 The data can be supplied in the command as individual bytes.
Example: I2CSEND &H6F, 1, 3, &H23, &H43, &H25

 The data can be in a one dimensional array. The subscript does not
have to be zero and will be honoured; also bounds checking is
performed.
Example: I2CSEND &H6F, 1, 3, ARRAY(0)

 The data can be a string variable (not a constant).
Example: I2CSEND &H6F, 1, 3, STRING$

The automatic variable MM.I2C will hold the result of the transaction.

I2CRCV addr, bus_hold,
rcvlen, rcvbuf [,sendlen,
senddata [,sendata]]

Receive data from the I2C slave device with the optional ability to send some
data first.
‘addr’ is the slave i2c address (note that 10 bit addressing is not supported).
‘option’ is a number between 0 and 3

1 = keep control of the bus after the command (a stop condition will not
be sent at the completion of the command)

2 = treat the address as a 10 bit address
3 = combine 1 and 2 (hold the bus and use 10 bit addresses).

‘rcvlen’ is the number of bytes to receive.
‘rcvbuf’ is the variable to receive the data - this is a one dimensional array or
if rcvlen is 1 then this may be a normal variable. The array subscript does
not have to be zero and will be honoured; also bounds checking is
performed.
Optionally you can specify data to be sent first using ‘sendlen’ and
‘senddata’. These parameters are used the same as in the I2CSEND
command (ie, senddata can be a constant, an array or a string variable).
Examples:

 I2CRCV &h6f, 1, 1, avar
 I2CRCV &h6f, 1, 5, anarray(0)
 I2CRCV &h6f, 1, 4, anarray(2), 3, &h12, &h34, &h89
 I2CRCV &h6f, 1, 3, anarray(0), 4, anotherarray(0)

The automatic variable MM.I2C will hold the result of the transaction.

MMBasic Language Manual Page 47

I2C Slave Mode Commands

I2CSEN addr, mask,
option, send_int, rcv_int

Enables the I2C module in slave mode.
‘addr’ is the slave i2c address
‘mask’ is the address mask (bits set as 1 will always match)
‘option’ is a number between 0 and 3

1 = allows MMBasic to respond to the general call address. When this
occurs the value of MM.I2C will be set to 4.

2 = treat the address as a 10 bit address
3 = combine 1 and 2 (respond to the general call address and use 10 bit

addresses).
‘send_int’ is the line number or label of a send interrupt routine to be
invoked when the module has detected that the master is expecting data.
 ‘rcv_int is the line number or label of a receive interrupt routine to be
invoked when the module has received data from the master.

I2CSDIS Disables the slave I2C module and returns the external I/O pins 12 and 13 to
a “not configured” state. Then can then be configured as per normal using
SETPIN.

I2CSSEND sendlen,
senddata [,sendata]

Send the data to the I2C master. This command should be used in the send
interrupt (ie in the 'send_int_line' when the master has requested data).
Alternatively a flag can be set in the send interrupt routine and the command
invoked from the main program loop when the flag is set.
‘sendlen is the number of bytes to send.
‘senddata’ is the data to be sent. This can be specified in various ways, see
the I2CSEND commands for details.

I2CSRCV rcvlen, rcvbuf,
rcvd

Receive data from the I2C master device. This command should be used in
the receive interrupt (ie in the 'rcv_int_line' when the master has sent some
data). Alternatively a flag can be set in the receive interrupt routine and the
command invoked from the main program loop when the flag is set.
‘rcvlen’ is the maximum number of bytes to receive.
‘rcvbuf’ is the variable to receive the data - this is a one dimensional array or
if rcvlen is 1 then this may be a normal variable. The array subscript does
not have to be zero and will be honoured; also bounds checking is
performed.
‘rcvd’ will contain actual number of bytes received by the command.

I2C Automatic Variable
MM.I2C Is set to indicate the result of an I2C operation.

0 = The command completed without error.
1 = Received a NACK response
2 = Command timed out
4 = Received a general call address (when in slave mode)

MMBasic Language Manual Page 48

I2C Utility Command

NUM2BYTE number,
array(x)
or
NUM2BYTE number,
variable1, variable2,
variable3, variable4

Convert 'number' to four numbers containing the four separate bytes of
'number' (MMBasic numbers are stored as the C float type and are four bytes
in length).
The bytes can be returned as four separate variables, or as four elements of
'array' starting at index 'x'.
See the function BYTE2NUM() for the reverse of this command.

I2C Utility Function

BYTE2NUM(array(x))
or
BYTE2NUM(arg1, arg2,
arg3, arg4)

Return the number created by storing the four arguments as consecutive
bytes (MMBasic numbers are stored as the C float type and are four bytes in
length).
The bytes can be supplied as four separate numbers (arg1 - arg4) or as four
elements of 'array' starting at index 'x'.
See the command NUM2BYTE for the reverse of this function.

MMBasic Language Manual Page 49

Appendix C
1-Wire Communications

Maximite family only (not DOS or Generic PIC32 versions).
The 1-Wire protocol was invented by Dallas Semiconductor to communicate with chips using a single
signalling line. It is mostly used in communicating with the DS18B20 and DS18S20 temperature measuring
chips. This implementation was developed for MMBasic by Gerard Sexton.

There are four commands that you can use:
OWRESET pin [,presence]
OWWRITE pin, flag, length, data [, data…]
OWREAD pin, flag, length, data [, data…]
OWSEARCH pin, srchflag, ser [,ser…]

Where:
pin - the MMBasic I/O pin to use
presence - an optional variable to receive the presence pulse (1 = device response, 0 = no device)
flag - a combination of the following options:

1 - send reset before command
2 - send reset after command
4 - only send/recv a bit instead of a byte of data
8 - invoke a strong pullup after the command (the pin will be set high and open drain disabled)

length - length of data to send or receive
data - data to send or receive
srchflag - a combination of the following options:

1 - start a new search
2 - only return devices in alarm state
4 - search for devices in the requested family (first byte of ser)
8 - skip the current device family and return the next device
16 - verify that the device with the serial number in ser is available
If srchflag = 0 (or 2) then the search will return the next device found

ser - serial number (8 bytes) will be returned (srchflag 4 and 16 will also use the values in ser)

After the command is executed, the pin will be set to the not configured state unless flag option 8 is used. The
data and ser arguments can be a string, array or a list of variables.
The OWRESET and OWSEARCH commands (and the OWREAD and OWWRITE commands if a reset is
requested) set the MM.OW variable to 1 = OK (presence detected, search successful) or 0 = Fail (presence not
detected, search unsuccessful).

There are two utility functions available:
OWCRC8(len, cdata [, cdata…]) Processes the cdata and returns the 8 bit CRC
OWCRC16(len, cdata [, cdata…]) Processes the cdata and returns the 16 bit CRC

Where:
len - length of data to process
cdata - data to process
The cdata can be a string, array or a list of variables

MMBasic Language Manual Page 50

Appendix D
SPI Communications

Maximite family only (not DOS or Generic PIC32 versions).
The Serial Peripheral Interface (SPI) communications protocol is used to send and receive data between
integrated circuits.

The SPI function in MMBasic acts as the master (ie, MMBasic generates the clock).

The syntax of the function is:
received_data = SPI(rx, tx, clk, data_to_send, speed, mode, bits)
Data_to_send, speed, mode and bits are all optional. If not required they can be represented by either empty
space between the commas or left off the end of the list.

Where:
 ‘rx’ is the pin number for the data input (MISO)
 ‘tx’ is the pin number for the data output (MOSI)
 ‘clk’ is the pin number for the clock generated by MMBasic (CLK)
 ‘data_to_send’ is optional and is an integer representing the data byte to send over the output pin. If it is

not specified the ‘tx’ pin will be held low.
 ‘speed’ is optional and is the speed of the clock. It is a single letter either H, M or L where H is 3 MHz,

M is 500 KHz and L is 50 KHz. Default is H.
 'mode' is optional and is a single numeric digit representing the transmission mode – see Transmission

Format below. The default mode is 3.
 'bits' is optional and represents the number of bits to send/receive. Range is 1 to 23 (this limit is defined

by how many bits can be stored in a floating point number). The default is 8.
The SPI function will return the data received during the transaction as an integer. Note that a single SPI
transaction will send data while simultaneously receiving data from the slave (which is often discarded).

Examples
Using all the defaults:
A = SPI(11, 12, 13)
Specifying the data to be sent:
A = SPI(11, 12, 13, &HE4)
Setting the mode but using the defaults for data to send and speed:
A = SPI(11, 12, 13, , , 2)
An example specifying everything including a 12 bit data transfer:
A = SPI(11, 12, 13, &HE4, M, 2, 12)

Transmission Format
The most significant bit is sent and received first. The format of the transmission can be specified by the 'mode'
as follows:

Mode CPOL CPHA Description

0 0 0 Clock is active high, data is captured on the rising edge and output on the falling edge

1 0 1 Clock is active high, data is captured on the falling edge and output on the rising edge

2 1 0 Clock is active low, data is captured on the falling edge and output on the rising edge

3 1 1 Clock is active low, data is captured on the rising edge and output on the falling edge

For a more complete explanation see: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

MMBasic Language Manual Page 51

I/O Pins
Before invoking this function the ‘rx’ pin must be configured as an input using the SETPIN command and the
‘tx’ and ‘clk’ pins must be configured as outputs (either normal or open collector) again using the SETPIN
command. The clock pin should also be set to the correct polarity (using the PIN function) before the SETPIN
command so that it starts as inactive.
The SPI enable signal is often used to select a slave and “prime” it for data transfer. This signal is not
generated by this function and (if required) should be generated using the PIN function on another pin.
The SPI function does not “take control” of the I/O pins like the serial and I2C protocols and the PIN command
will continue to operate as normal on them. Also, because the I/O pins can be changed between function calls
it is possible to communicate with many different SPI slaves on different I/O pins.

Example
The following example will send the command &H80 and receive two bytes from the slave SPI device.
Because the mode, speed and number of bits are not specified the defaults are used.
 SETPIN 18, 2 ‘ set rx pin as a digital input
 SETPIN 19, 8 ‘ set tx pin as an output
 PIN(20) = 1 : SETPIN 20, 8 ‘ set clk pin high then set it as an output
 PIN(11) = 1 : SETPIN 11, 8 ‘ pin 11 will be used as the enable signal

 PIN(11) = 0 ‘ assert the enable line (active low)
 junk = SPI(18, 19, 20, &H80) ‘ send the command and ignore the return
 byte1 = SPI(18, 19, 20) ‘ get the first byte from the slave
 byte2 = SPI(18, 19, 20) ‘ get the second byte from the slave
 PIN(11) = 1 ‘ deselect the slave

MMBasic Language Manual Page 52

Appendix E
Loadable Fonts

Maximite family only (not DOS or Generic PIC32 versions).
This section describes the format of a font file that can be loaded using the FONT LOAD command.
A font file is just a text file containing ordinary characters which are loaded line by line to build the bitmap of
each character in the font. Each character can be up to 64 pixels high and 255 pixels wide. Up to 255
characters can be defined.
The first non-comment line in the file must be the specifications for the font as follows:
 height, width, start, end
Where 'height' and 'width' are the size of each character in pixels, 'start' is the number in the ASCII chart where
the first character sits and 'end' is the last character. Each number is separated by a comma. So, for example,
16, 11, 48, 57 means that the font is 16 pixels high and 11 wide. The first character is decimal 48 (the
zero character) and the last is 57 (number nine character).
The remainder of the lines specify the bitmap for each character.
Each line represents a horizontal row of pixels. A space means the pixel is not illuminated and any other
character will turn the pixel on. If the font is 11 pixels wide there must be 11 characters in the line although
trailing spaces can be omitted. The first line is the top row of pixels in the character, the next is the second and
so on. If the character is 16 pixels high there must be 16 lines to define the character. This repeats until each
character is drawn. Using the above example of a font 16x11 with 10 characters there must be a total of 160
lines with each line 11 characters wide. This is in addition to the specification line at the top.
A comment line has an apostrophe (') as the first character and can occur anywhere. A comment line is
completely ignored; all other lines are significant.
The following example creates two small icons; a smiley face and a frowning face. Each is 11x11 pixels with
the first (the smiley face) in the position of the zero character (0) and the frowning face in the position of
number one (1). To display a smiley face your program would contain this:

40 FONT LOAD "FACES.FNT" AS #6 ' load the font
50 FONT #6 ' select the font
60 PRINT "0" ' print a smiley face

' example
' FACES.FNT
11,11,48,49

 XXX
 XX XX
 XX XX
XX X X XX
X X
XX X X XX
 X XXX X
 XX XX
 XXX

 XXX
 XX XX
 XX XX
XX X X XX
X X
XX XXX XX
 X X X X
 XX XX
 XXX

MMBasic Language Manual Page 53

Appendix F
Special Keyboard Keys

Maximite family only (not DOS or Generic PIC32 versions).
MMBasic generates a single unique character for the function keys and other special keys on the keyboard.
These are shown in the table as hexadecimal and decimal numbers:

Keyboard Key Key Code
(Hex)

Key Code
(Decimal)

Up Arrow 80 128

Down Arrow 81 129

Left Arrow 82 130

Right Arrow 83 131

Insert 84 132

Home 86 134

End 87 135

Page Up 88 136

Page Down 89 137

Alt 8B 139

Num Lock 8C 140

F1 91 145

F2 92 146

F3 93 147

F4 94 148

F5 95 149

F6 96 150

F7 97 151

F8 98 152

F9 99 153

F10 9A 154

F11 9B 155

F12 9C 156

If the control key is simultaneously pressed then 20 (hex) is added to the code (this is the equivalent of setting
bit 5). If the shift key is simultaneously pressed then 40 (hex) is added to the code (this is the equivalent of
setting bit 6). If both are pressed 60 (hex) is added. For example Control-PageDown will generate A9 (hex).
The shift modifier only works with the function keys F1 to F12; it is ignored for the other keys.

MMBasic will translate most VT100 escape codes generated by terminal emulators such as Tera Term and
Putty to these codes (excluding the shift and control modifiers). This means that a terminal emulator operating
over a USB or a serial port opened as console will generate the same key codes as a directly attached keyboard.
This is particularly useful when using the EDIT command.

MMBasic Language Manual Page 54

Appendix G
Tera Term Setup

Maximite family only (not DOS or Generic PIC32 versions).
MMBasic creates a virtual serial port over USB so that you can communicate with it from a Windows, Linux or
Macintosh computer using nothing more than the USB port.
The communications protocol used is the CDC (Communication Device Class) protocol and there is native
support for this in Linux (the cdc-acm driver) and Apple OS/X. Macintosh users can refer to the document
"Using Serial Over USB on the Macintosh" on http://geoffg.net/maximite.html. The rest of this tutorial
assumes that you are using a computer running Windows XP, Vista or 7.
First you need to install the Windows Serial Port Driver (available from http://geoffg.net/maximite.html). Full
instructions are included in the download and when you have finished you should see the connection in Device
Manager as a numbered communications port (ie, COM13).

To communicate with MMBasic over this virtual serial port you need to use a terminal emulator. This is a
program that emulates the old fashioned VT100 terminal over a serial communications link. There are quite a
few free emulators that you can use but I recommend Tera Term.

1. You should download Tera Term from http://en.sourceforge.jp/projects/ttssh2/releases/ and install it.
These instructions are based on version 4.71.

2. Make sure that the USB cable is plugged into your PC and that you know the COM number.
3. When you run Tera Term for the first time you will get a dialog box asking you to select the type of

connection. Select serial and select the correct COM number. You should then see the MMBasic prompt
as shown below:

4. Before you start using Tera Term you need to make a few changes to the setup:

Select Setup -> Terminal…
Set the terminal size to 80 x 36.
Untick the tick box labelled "term size = win size".
Tick the box labelled "auto window resize".

Select Setup -> Serial Port…
Make sure that the port matches the COM number representing the Maximite.
In the box for the "transmit delay msec/line" enter 50. Leave the other box with zero in it.
You do not have to bother with the baud rate or any other settings.

Select Setup -> Save Setup…
Save the setup as TERATERM.INI in the Tera Term installation directory overwriting the file there.

http://geoffg.net/maximite.html.
http://geoffg.net/maximite.html).
http://en.sourceforge.jp/projects/ttssh2/releases/

MMBasic Language Manual Page 55

Appendix H
Sprite Definition Files

Maximite family only (not DOS or Generic PIC32 versions).
This section describes the format of a sprite file that can be loaded using the SPRITE LOAD command.
A sprite file is similar to a font file except that it contains the definition of sprites which are 16x16 bit graphical
objects that can be moved about on the video screen without disturbing background text of graphics. The sprite
file is just a text file containing ordinary characters which are loaded line by line to build the bitmap of each
sprite. Currently the dimensions of each sprite are fixed at 16x16 bits although alternative sizes may be
allowed in the future.
The first non-comment line in the file must be the specifications for the sprite file as follows:
 dimension, number
Where 'dimension' is the height and width of the sprites in pixels. At this time it must be the number 16.
'number' is the number of sprites in the file and is limited only by the amount of free memory available. The
remainder of the lines specify the bitmap for each sprite.
Each line represents a horizontal row of pixels with each character in the line defining the colour of the pixel.
The character can be a single numeric digit in the range of 0 to 7 representing the colours black to white or it
can be a space which means that that particular pixel will be transparent (ie, the background will show
through).
Each sprite must immediately follow the preceding sprite in the file and be defined by 16 lines each of 16
characters wide (although trailing spaces can be omitted and will be assumed to be transparent pixels).
A comment line has an apostrophe (') as the first character and can occur anywhere. A comment line is
completely ignored; all other lines are significant.
The following example is of a file that contains a single sprite consisting of a red ball with a white border and a
blue centre dot:

' example sprite
' TEST.SPR
16, 1
 7777
 74444447
 744444444447
 74444444444447
 74444444444447
7444444444444447
7444444114444447
7444441111444447
7444441111444447
7444444114444447
7444444444444447
 74444444444447
 74444444444447
 744444444447
 74444447
 7777

