

Colour Maximite 2
GUI Features

Contents

GUI Functionality .. 2

GUI Controls ... 3

GUI Programming Techniques ... 10

Example Program ... 16

Commands (GUI Functions Only)... 19

Functions (GUI Functions Only) ... 26

Micromite Plus Manual Page 2

GUI Functionality
The Colour Maximite 2 incorporates a suite of advanced graphic controls that respond to input from a mouse.
These include on screen switches, buttons, indicator lights, keyboard, etc. MMBasic will draw the control and
animate it (ie, a switch will appear to depress when activated). All that the BASIC program needs to do is
invoke a single line command to specify the basic details of the control.

These features are called GUI controls and are the subject of this manual. For details of the BASIC language
and the general features of the Colour Maximite 2 refer to the Colour Maximite 2 User Manual.

Using the GUI controls makes it is easy to implement a process control type console where the user can
manage a process by simply pointing and clicking with a mouse.

This is an example of these controls used in a demonstration of a pump control panel:

To use the GUI controls in the Colour Maximite 2 two actions need to be taken:

 The Colour Maximite 2 must have a mouse connected and this must be configured using the OPTION
MOUSE command. Connecting a mouse and the use of this command is described in the Colour
Maximite 2 User Manual.

 The memory required by the GUI controls must be allocated by using the command OPTION
MAXCTRLS n. Typically you would use the command: OPTION MAXCTRLS 100
This will set the maximum number of controls that you can define to 100. This option is permanent (ie,
it will be remembered on power down). By default the maximum number of controls is set to zero, in
this case the GUI features are not available and no memory will be used.

Assuming this is all set-up and a mouse is connected the first use of a GUI command will automatically
initialise the mouse and cursor. Then you can use the mouse to move the cursor round the screen and left click
to activate any defined controls.

Micromite Plus Manual Page 3

GUI Controls
GUI controls are created using the appropriate GUI command. For example, the following command will
create an on screen check box:

GUI CHECKBOX #10, "Test", 100, 100, 50

The user can then activate this control using the mouse (ie, left click on the image of the control) to check or
uncheck the box without the BASIC program having to do anything. When the BASIC program needs to act on
the value of the check box its value can be retrieved by using its reference number in the CtrlVal() function:

IF CtrlVal(#10) THEN ...

Each control has this reference number which is called '#ref' in the description of the control. This can be any
number between 1 and the value set by the OPTION MAXCTRLS command (typically 100). The reference
number is used to identify a control. The # character is optional but serves to remind the programmer that this
is not an ordinary number.

In the following commands any arguments that are in italic font (eg, Width, Height) are optional and if not
specified will take the value of the previous command that did specify them. This means for example, that a
number of radio buttons with the same size and colour can be specified with only the first button having to list
all the details. Note that with the colour specification this is different to the Basic Drawing Commands which
default to the last COLOUR command.

All strings used in GUI controls and the MsgBox can display multiple lines by using the tilde character (~) to
separate each line in the string. For example, a push button's caption can be "ALARM~TEST" and this would
be displayed as two lines. For all controls the font used for the caption will be whatever is set with the FONT
command and the colours will be whatever was set by the last COLOUR command.

The GUI commands allow the use of -1 for the background colour to specify a transparent background. This
means that the text is drawn over the background with the background image showing through the gaps in the
letters.

The GUI controls are:

Frame
GUI FRAME #ref, caption$, StartX, StartY, Width, Height, Colour

This will draw a frame which is a box with round corners and a caption. A frame does not respond to a mouse
click but is useful when a group of controls need to be visually brought together. It can also used to surround a
group of radio buttons and MMBasic will arrange for the radio buttons surrounded by the frame to be exclusive
– that is, when one radio button is selected any other button that was selected and within the frame will be
automatically deselected.

LED
GUI LED #ref, caption$, CenterX, CenterY, Diameter, Colour

This will draw an indicator light (it looks like a panel mounted LED). When its value is set to one it will be
illuminated and when it is set to zero it will be off (a dull version of its colour attribute). The LED can be made
to flash by setting its value to the number of milliseconds that it should remain on before turning off.

The caption will be drawn to the right of the LED and will use the colours set by the COLOUR command. The
LED control is not animated when clicked on but its reference number can be found using CLICK(REF) and
CLICK(LASTREF) in the mouse interrupts and any required animation can be done in MMBasic.

Check Box
GUI CHECKBOX #ref, caption$, StartX, StartY, Size, Colour

This will draw a check box which is a small box with a caption. Both the height and width are specified with
the 'Size' parameter. When clicked with the mouse an X will be drawn inside the box to indicate that this
option has been selected and the control's value will be set to 1. When clicked a second time the check mark
will be removed and the control's value will be zero. The caption will be drawn to the right of the Check Box
and will use the colours set by the COLOUR command.

Micromite Plus Manual Page 4

Push Button
GUI BUTTON #ref, caption$, StartX, StartY, Width, Height, FColour, BColour

This will draw a momentary button which is a square switch with the caption on its face. When clicked on the
visual image of the button will appear to be depressed and the control's value will be 1. When tha mouse click
is removed the value will revert to zero. Caption can be a single string with two captions separated by a
vertical bar (|) character (eg, "UP|DOWN"). When the button is up the first string will be used and when
pressed the second will be used.

Switch
GUI SWITCH #ref, caption$, StartX, StartY, Width, Height, FColour, BColour

This will draw a latching switch with the caption on its face. When clicked on the visual image of the button
will appear to be depressed and the control's value will be 1. When clicked a second time the switch will be
released and the value will revert to zero. Caption can be a single string with two captions separated by a |
character (eg, "ON|OFF"). When this is used the switch will appear to be a toggle switch with each half of the
caption used to label each half of the toggle switch.

Radio Button
GUI RADIO #ref, caption$, CenterX, CenterY, Radius, Colour

This will draw a radio button with a caption. When clicked with the mouse the centre of the button will be
illuminated to indicate that this option has been selected and the control's value will be 1. When another radio
button is selected the mark on this button will be removed and its value will be zero. Radio buttons are grouped
together when surrounded by a frame and when one button in the group is selected all others in the group will
be deselected. If a frame is not used all buttons on the screen will be grouped together.

The caption will be drawn to the right of the button and will use the colours set by the COLOUR command.

Display Box
GUI DISPLAYBOX #ref, StartX, StartY, Width, Height, FColour, BColour

This will draw a box with rounded corners. Any text can be displayed in the box by using the CtrlVal(r) =
command. This is useful for displaying text, numbers and messages. This control is not animated when
clicked on but its reference number can be found using CLICK(REF) and CLICK(LASTREF) in the mouse
interrupts and any required animation can be done in MMBasic.

Text Box
GUI TEXTBOX #ref, StartX, StartY, Width, Height, FColour, BColour

This will draw a box with rounded corners. When
the box is clicked on a QWERTY keyboard will
appear on the screen as shown on the right. Using
the mouse to click on the keys of this virtual
keyboard any text can be entered into the box
including upper/lower case letters, numbers and
any other characters in the ASCII character set.
The new text will replace any text previously in
the box.

Ent is the enter key, Can is the cancel key and
will close the text box and return it to its original
state, the triangle is the shift key, the [] key will
insert a space and the &12 key will select an
alternate key selection with numbers and special
characters (there are two sets of special characters
and the shift key will switch between them).

The value of the control can be set to a string starting with two hash characters (##) and in that case the string
(without the leading two hash characters) will be displayed in the box with reduced brightness. This can be
used to give the user a hint as to what should be entered (called "ghost text"). Reading the value of the control

Micromite Plus Manual Page 5

displaying ghost text will return an empty string. When any key is pressed the ghost text will vanish and be
replaced with the entered text.

MMBasic will try to position the virtual keyboard on the screen so as to not obscure the text box that caused it
to appear. A mouse down interrupt will be generated when the keyboard is deployed and a mouse up interrupt
will be generated when the Enter or Cancel keys are clicked and the keyboard is hidden. If necessary the
virtual keyboard can be dismissed by the program (same as clicking on the cancel button) with the command:
GUI TEXTBOX CANCEL. If the virtual keyboard is not displayed this will do nothing.

Number Box
GUI NUMBERBOX #ref, StartX, StartY, Width, Height, FColour, BColour

This will draw a box with rounded corners. When
the box is clicked on using the mouse a numeric
keypad will appear on the screen as shown on the
right. Using this virtual keypad any number can
be entered into the box including a floating point
number in exponential format. The new number
will replace the number previously in the box.

The Alt key will select an alternative key selection
and the other special keys are the same as with the
text box.

Similar to the Text Box, the value of the control can
set to a literal string with two leading hash
characters (eg, "##Hint") and in that case the string (without the leading two characters) will be displayed in the
box with reduced brightness. Reading this will return zero and when a key is clicked on the ghost text will
vanish.

MMBasic will try to position the virtual keypad on the screen so as to not obscure the number box that caused
it to appear. A mouse down interrupt will be generated when the keypad is deployed and a mouse up interrupt
will be generated when the Enter key is clicked on and the keypad is hidden. Also, when the Enter key is
clicked on using the mouse the entered text will be evaluated as a number and the NUMBERBOX control
redrawn to display this number.

If necessary the virtual keypad can be dismissed by the program (same as clicking on the cancel button) with
the command: GUI NUMBERBOX CANCEL. If it is not displayed this command will do nothing.

Formatted Number Box
GUI FORMATBOX #ref, Format, StartX, StartY, Width, Height, FColour, BColour

This will draw a box with rounded corners. When the box is clicked on using the mouse a numeric keypad will
appear similar to a Number Box. The difference is that the Formatted Number Box will require the user to
enter numbers according to a specific format for dates, time, etc. Invalid keys on the keypad will be disabled
and the user will guided in their entry with guide text. This means that the programmer can be assured that the
entry made by the user will always be in a fixed format.

The type of entry is controlled by the 'Format' argument as follows:

DATE1 Date in UK/Aust/NZ format (dd/mm/yy)
DATE2 Date in USA format (mm/dd/yy)
DATE3 Date in international format (yyyy/mm/dd)
TIME1 Time in 24 hour notation (hh:mm)
TIME2 Time in 24 hour notation with seconds (hh:mm:ss)
TIME3 Time in 12 hour notation (hh:mm AM/PM)
TIME4 Time in 12 hour notation with seconds (hh:mm:ss AM/PM)
DATETIME1 Both date (UK fmt) and time (12 hour) (dd/mm/yy hh:mm AM/PM)
DATETIME2 Both date (UK fmt) and time (24 hour) (dd/mm/yy hh:mm)
DATETIME3 Both date (USA fmt) and time (12 hour) (mm/dd/yy hh:mm AM/PM)
DATETIME4 Both date (USA fmt) and time (24 hour) (mm/dd/yy hh:mm)
LAT1 Latitude in degrees, minutes and seconds (d°` mm' ss" N/S)
LAT2 Latitude with seconds to one decimal place (dd° mm' ss.s" N/S)
LONG1 Longitude in degrees, minutes and seconds (ddd° mm' ss" E/W)

Micromite Plus Manual Page 6

LONG2 Longitude with seconds to one decimal place (ddd° mm' ss.s" E/W)
ANGLE1 Angle in degrees and minutes (ddd° mm')

For example:
 GUI FORMATBOX #1, DATE1, 300, 150, 200, 50

would create a data entry box and when it is clicked on a keypad
will appear as shown on the right . Note that:

 The display box is filled with a guide string to prompt the
user as to the data required.

 Because the day of the month can only start with a digit
from 0 to 3 all other keys are disabled. This also happens
with other numbers that have a limited range.

 The value of the control retrieved via CtrlVal(#1) is a string.
As an example, if the user entered the date for the 8th of
May 2020 the returned string would be "08/05/20" (ie, the
UK/Aust/NZ format as specified by DATE1).

The value of the control can be pulled apart using the string functions or, in some cases, the string can be used
directly. For example, if using the above format box to get a date from the user the Micromite's internal clock
could then be directly set as follows:
 DATE$ = CtrlVal(#1)

The RTC SETTIME command will accept a single string argument in the format of dd/mm/yy hh:mm so
similarly the RTC time could be set as follows if the formatted box used DATETIME2 for 'Format':
 RTC SETTIME CtrlVal(#1)

You can use the USA style DATETIME4 to get the date/time. In that case you would use this to set the RTC:
 RTC SETTIME MID$(CtrlVal(#1),4,3) + LEFT$(CtrlVal(#1),2) + RIGHT$((CtrlVal(#1),9)

MMBasic will try to position the virtual keypad on the screen so as to not obscure the format box that caused it
to appear. A mouse down interrupt will be generated when the keypad is deployed and a mouse up interrupt
will be generated when all the required data has been entered and the keypad is hidden.

If necessary the virtual keypad can be dismissed by the program (same as clicking on the cancel button) with
the command: GUI FORMATBOX CANCEL (if the keypad is not displayed this command will do nothing).

Spin Box
GUI SPINBOX #ref, StartX, StartY, Width, Height, FColour, BColour, Step,

Minimum, Maximum

This will draw a box with up/down icons on either end. When these icons are clicked on using the mouse the
number in the box will be incremented or decremented by the 'StepValue', holding down the mouse button will
repeat at a fast rate. 'Minimum' and 'Maximum' set a limit on the value that can be entered. 'StepValue',
'Minimum' and 'Maximum' are optional and if not specified 'StepValue' will be 1 and there will be no limit on
the number entered. A mouse down interrupt will be generated every time up/down is clicked on or when
automatic repeat occurs.

Caption
GUI CAPTION #ref, text$, StartX, StartY, Alignment, FColour, BColour

This will draw a text string on the screen. It is similar to the basic drawing command TEXT, the difference
being that MMBasic will automatically dim this control if a keyboard or number pad is displayed.

'Alignment' is zero to three characters (a string expression or variable is also allowed) where the first letter is
the horizontal alignment around X and can be L, C or R for LEFT, CENTER, RIGHT and the second letter is
the vertical alignment around Y and can be T, M or B for TOP, MIDDLE, BOTTOM. A third character can be
used to indicate the rotation of the text. This can be 'N' for normal orientation, 'V' for vertical text with each
character under the previous running from top to bottom, 'I' the text will be inverted (ie, upside down), 'U' the
text will be rotated counter clockwise by 90º and 'D' the text will be rotated clockwise by 90º. The default
alignment is left/top with no rotation.

Micromite Plus Manual Page 7

If the colours are not specified this control will use the colours set by the COLOUR command.

Circular Gauge
GUI GAUGE #ref, StartX, StartY, Radius, FColour, BColour, min, max,
nbrdec, units$, c1, ta, c2, tb, c3, tc, c4

This will define a graphical circular analogue gauge with a digital display in the centre showing the value and
units. If specified the gauge will be coloured to provide a graphical indication of the signal level (eg, green for
OK, yellow for warning, etc).

'StartX' and 'StartY' are the coordinates of the centre of the gauge while 'Radius' is the distance from the centre
to the outer edge.

'min' is the value associated with the minimum value of the gauge and 'max' is the
maximum value. When CtrlVal() is used to assign a value (floating point or
integer) to the gauge the analogue portion of the gauge will be drawn to a length
proportional to the range between 'min' and 'max'. At the same time the digital
value will be drawn in the centre of the gauge using the current font settings (set
with the FONT command). 'nbrdec' specifies the number of decimal places to be
used in this display. Under the digital value the 'units$' will be displayed (this can
be skipped or a zero length string used if not required).

Normally the analogue graph is drawn using the colour specified in 'Fcolour'
however a multi colour gauge can be created using 'c1' to 'c4' for the colours and
'ta' to 'tc' for the thresholds used to determine when the colour will change.

Specifically, 'c1' is the colour to be used for values up to 'ta'. 'c2' is the colour to be
used for values between 'ta' and 'tb', 'c3' is used for values between 'tb' and 'tc' and
c4 is used for values above 'tc'. Colours and thresholds not required can be left off
then list. For example, for a two colour gauge only 'c1', 'ta' and 'c2' need to be
specified.

When colours and thresholds are specified the background of the gauge will be drawn with a dull version of the
gauge colour at that level ("ghost colouring") so that the user can appreciate how close to the various thresholds
the actual value is. Also the digital value displayed in the centre will also change to the colour specified by the
current value.

If only one colour is required for the whole analogue graph it can be specified by just using 'c1' and leaving all
the following parameters off.

Bar Gauge
GUI BARGAUGE #ref, StartX, StartY, width, height, FColour, BColour, min,
max, c1, ta, c2, tb, c3, tc, c4

This will define either a horizontal or vertical bar gauge. The gauge
can be coloured to provide a graphical indication of the signal level
(eg, green for OK, yellow for warning, etc) and many bar graphs can
be packed close together so that a number of values can be displayed
simultaneously using a small amount of screen space (as shown in
the image which consists of ten bar gauges).

If the width is less that the height the bar gauge will be drawn
vertically with the analogue graph growing from the bottom towards
the top. Otherwise, if the width is more that the height, it will be
drawn horizontally with the analogue graph growing from the left
towards the right. In both cases 'StartX' and 'StartY' reference the
top left coordinate of the bar graph while 'width' is the horizontal
width and 'height' the vertical height.

The bar graph does not have a digital display of its value but other
than that the parameters are the same as for the circular gauge (described above).

 'min' and 'max' specify the range of values for the bar and, if specified, 'c1' to 'c4' and 'ta' to 'tc' specify the
colours and thresholds for the bar image. Note that unlike the circular bar gauge a "ghost image" of the colours
is not shown in the background.

Micromite Plus Manual Page 8

As with the circular gauge, if only one colour is required for the whole gauge it can be specified by just using
'c1' and leaving all the following parameters off.

Area
GUI AREA #ref, StartX, StartY, Width, Height

This will define an invisible area of the screen that is sensitive to a mouse click and will set CLICK(REF) and
CLICK(LASTREF) accordingly when clicked on or released. It can be used as the basis for creating a custom
control which is defined and managed by the BASIC program.

Interacting with Controls
Using the following commands and functions the characteristics of the on screen controls can be changed and
their value retrieved.

 = CTRLVAL(#ref)
This is a function that will return the current value of a control. For controls like check boxes or switches it
will be the number one (true) indicating that the control has been selected by the user or zero (false) if not.
For controls that hold a number (eg, a SPINBOX) the value will be the number (normally a floating point
number). For controls that hold a string (eg, TEXTBOX) the value will be a string. For example:
 PRINT "The number in the spin box is: " CTRLVAL(#10)

 CTRLVAL(#ref) =
This command will set the value of a control. For off/on controls like check boxes it will override any
previous mouse input and can be used to depress/release switches, tick/untick check boxes, etc. A value of
zero is off or unchecked and non zero will turn the control on. For a LED it will cause the LED to be
illuminated or turned off. It can also be used to set the initial value of spin boxes, text boxes, etc. For
example:
 CTRLVAL(#10) = 12.4

 GUI FCOLOUR colour, #ref1 [, #ref2, #ref3, etc]
This will change the foreground colour of the specified controls to 'colour'. This is especially handy for a
LED which can change colour.

 GUI BCOLOUR colour, #ref1 [, #ref2, #ref3, etc]
This will change the background colour of the specified controls to 'colour'.

 = CLICK(REF)
This is a function that will return the reference number of the control currently activated (ie, being clicked
on by the mouse). If no control is currently activated it will return zero.

 = CLICK(LASTREF)
This is a function that will return the reference number of the control that was last activated (ie, clicked on
using the mouse).

 GUI DISABLE #ref1 [, #ref2, #ref3, etc]
This will disable the controls in the list. Disabled controls do not respond to a mouse click and will be
displayed dimmed. The keyword ALL can be used as the argument and that will disable all controls on
the currently displayed page. For example:
GUI DISABLE ALL

 GUI ENABLE #ref1 [, #ref2, #ref3, etc]
This will undo the effects of GUI DISABLE and restore the controls in the list to normal operation. The
keyword ALL can be used as the argument for all controls on the currently displayed page.

 GUI HIDE #ref1 [, #ref2, #ref3, etc]
This will hide the controls in the list. Hidden controls will not respond to a mouse click and will be
replaced on the screen with the current background colour. The keyword ALL can be used as the argument.

 GUI SHOW #ref1 [, #ref2, #ref3, etc]
This will undo the effects of GUI HIDE and restore the controls in the list to being visible and capable of
normal operation. The keyword ALL can be used as the argument for all controls.

Micromite Plus Manual Page 9

 GUI DELETE #ref1 [, #ref2, #ref3, etc]
This will delete the controls in the list. This includes removing the image of the control from the screen
using the current background colour and freeing the memory used by the control. The keyword ALL can
be used as the argument and that will cause all controls to be deleted.

MsgBox()
The MsgBox() function will display a message box on the screen and wait for user input. While the message
box is displayed all controls will be disabled so that the message box has the complete focus.

The syntax is:
r = MsgBox(message$, button1$ [, button2$ [, button3$ [, button4$]]])

All arguments are strings. 'message$' is the message to display. This can contain one or more tilde characters
(~) which indicate a line break. Up to 10 lines can be displayed inside the box. 'button1$' is the caption for the
first button, 'button2$' is the caption for the second button, etc. At least one button must be specified and four
is the maximum. Any buttons not included in the argument list will not be displayed.

The font used will be the default font set using the FONT command and the colours used will be the defaults
set by the COLOUR command. The box will be automatically sized taking into account the dimensions of the
default font, the number of lines to display and the number of buttons specified.

When the user clicks on a button the message box will erase itself, restore the display (eg, re enable all
controls) and return the number of the button that was clicked (the first button will return 1, the second 2, etc).
Note that, unlike all other GUI controls the BASIC program will stop running while the message box is
displayed, interrupts however will be honoured and acted upon.

To illustrate the usage of a message box will the following program fragment will attempt to open a file and if
an error occurs the program will display an error message using the MsgBox() function. The message has two
lines and the box has two buttons for retry and cancel.
Do
 On Error Skip
 Open "file.txt" For Input As #1
 If MM.ErrNo <> 0 Then
 if MsgBox("Error~Opening file.txt","RETRY","CANCEL") = 2 Then Exit Sub
 EndIf
Loop While MM.ErrNo <> 0

This would be the result if the file "file.txt" did not exist:

Micromite Plus Manual Page 10

GUI Programming Techniques
When programming using the advanced GUI commands there are a number of hints and techniques to consider
that will make it easier to develop and maintain your program.

The User Should Be In Control
Traditional character based programs are normally in control of the interaction with the user. For example, the
program may display a menu and prompt the user to select an action. If the user selects an invalid option the
program would display an error message and display the menu options again.

However graphical based programs such as that created using the advanced GUI commands are different.
Usually the program just starts running doing what it normally does (eg, control temperature, speed, etc) and it
is the user's job to select and change parameters without being prompted. This is a different way of
programming and is often hard for the traditional programmer to get used to this different technique.

As an example, consider a program that is to control a cutting device. The traditional program would prompt
the user for the speed and cutting time. When both have been entered the program would prompt to start the
cutting cycle. However, a graphical based program would display two number boxes where the user could
enter the speed and time along with a run button. The number boxes could be filled with default values and the
run button would be disabled if the user entered an invalid speed or time. When the run button is clicked on the
cutting cycle would start.

A good example of this type of graphical interface is the dialogue box used on a Windows/IOS/Android
computer to set the time and date. It displays a number of boxes where the user can enter the date/time along
with an OK button that tells the program to accept the data entered. At no time is the user forced to make a
selection from a menu. Also, the current time/date is already displayed in the entry boxes so the user can
accept them as the default if they wanted to do so.

If you need some inspiration as to how your graphical program should look and feel check your nearest GUI
based operating system to see how they operate.

Program Structure
Typically a program would start by defining the controls (which MMBasic will draw on the screen), then it
would set the defaults and finally it would drop into a continuous loop where it would do whatever job it was
design to do. For example, take the case of a simple controller for a motor where the user could select the
speed and cause the motor to run by clicking on an on screen button.

To implement this function the program would look something like this:
GUI CAPTION #1, "Speed (rpm)", 200, 50 ' label the number box
GUI NUMBERBOX #2, 200, 100, 150, 40 ' define and draw the number box
CtrlVal(#2) = 100 ' default value for the speed
GUI BUTTON #3, "RUN", 200, 350, 0, RGB(red) ' define and draw the RUN button

DO ' this runs in a loop forever
 IF CtrlVal(#3)<10 OR CtrlVal(#3)>200 THEN ' check the speed setting
 GUI DISABLE #3 ' disable RUN if it is invalid
 ELSE ' otherwise
 GUI ENABLE #3 ' enable the RUN button
 ENDIF

 IF CtrlVal(#3) = 1 THEN ' if the button is pressed
 SetMotorSpeed CtrlVal(#2) ' make the motor run
 ELSE ' otherwise the button is up
 SetMotorSpeed 0 ' therefore set motor speed to zero
 ENDIF
LOOP

Note that the user is not prompted to do anything; the program just sits in a loop reacting to the changes that the
user has made to the controls (ie, the user is in control).

Micromite Plus Manual Page 11

Disable Invalid Controls
As in the above example, disabling a control will prevent a user from using it and MMBasic will redraw it in a
dull colour to indicate that it is not available. This is the equivalent of an error message in a traditional text
based program and is more user friendly than popping up a message box which must be dismissed before
anything else can be done.

There are many times that a control could be invalid, for example when an input is not ready or simply when an
option or action does not apply. Later, when the control becomes valid you can use the GUI ENABLE
command to return it to use. Another example is when a GUI NUMBERBOX keypad is displayed MMBasic
will automatically disable all other controls on the screen so that it is obvious to the user where their input is
required.

Disabling a control still leaves it on the screen, so that the user knows that it is there but it will be dimmed and
will not respond to a mouse click. Not responding to a mouse click also means that the user cannot change it
and an interrupt will not be generated when it is clicked on. This is handy for you the programmer because you
do not have to check if the control is valid before acting on it.

Use Constants for Control Reference Numbers
The advanced controls use a reference number to identify the control. To make it easy to read and maintain
your program you should define these numbers as constants with easy to recognise names.

For example, in the following program fragment MAIN_SWITCH is defined as a constant and this constant is
used wherever the reference number for that control is required:
CONST MAIN_SWITCH = 5
CONST ALARM_LED = 6
'…
GUI SWITCH MAIN_SWITCH, "ON|OFF", 330, 50, 140, 50, RGB(white), RGB(blue)
GUI LED ALARM_LED, 215, 220,30, RGB(red)
'…
IF CtrlVal(MAIN_SWITCH) = 0 THEN … ' for example turn the pump off
IF ALARM THEN CtrlVal(ALARM_LED) = 1

It is much easier to remember what MAIN_SWITCH does than remembering what control the number 5 refers
to. Also, when you have a lot of controls it is much easier to renumber the controls when all their numbers are
defined at the one place at the start of the program.

By default the reference number must be a number between 1 and 100 however the upper limit can be changed
with the OPTION CONTROL command. Increasing the number will consume more RAM and decreasing it
will recover some RAM.

The Main Program Is Still Running
It is important to realise that your main BASIC program is still running while the user is interacting with the
GUI controls. For example, it will continue running even while a user holds down an on screen switch and it
will keep running while the virtual keyboard is displayed as a result of activating a TEXTBOX control.

For this reason your main program should not arbitrarily update mouse sensitive screen controls, because they
might change the on screen image while the user is using them (with undefined results). Normally when a
BASIC program using GUI controls starts it will initialise controls such as a SPINBOX, NUMBERBOX and
TEXTBOX to some initial value but from then on the main program should just read the value of these
controls – it is the responsibility of the user to change these, not your program.

However, if you do want to change the value of such an on-screen control you need some mechanism to
prevent both the program and the user making a change at the same time. One method is to set a flag within the
mouse down interrupt to indicate that the control should not be updated during this time. This flag can then be
cleared in the mouse up interrupt to allow the main program to resume updating the control.

Note that this discussion only applies to controls that respond to a mouse click. Controls such as CAPTION
can be changed at any time by the main program and often are.

Micromite Plus Manual Page 12

Use Interrupts and SELECT CASE Statements
Everything that happens on a screen using the advanced controls will be signalled by an interrupt, either a
mouse down or a mouse up. So, if you want to do something immediately when a control is changed, you
should do it in an interrupt. Mostly you will be interested in when the mouse click is made but in some cases
you might also want to know when it is released (ie, mouse up).

Because the interrupt is triggered when the mouse is clicked on any control or any part of the screen you need
to discover what control was being activated. This is best performed using the CLICK(REF) function and the
SELECT CASE statement.

For example, in the following fragment the subroutine MouseClick will be called when there is a mouse click
and the function CLICK(REF) will return the reference number of the control being activated. Using the
SELECT CASE the alarm LED will be turned on or off depending on which button is clicked on. The action
could be any number of things like raising an I/O pin to turn on a physical siren or printing a message on the
screen.
CONST ALARM_ON = 15
CONST ALARM_OFF = 16
CONST ALARM_LED = 33
GUI INTERRUPT MouseClick
'…
GUI BUTTON ALARM_ON, "ALARM ON ", 330, 50, 140, 50, RGB(white), RGB(blue)
GUI BUTTON ALARM_OFF, "ALARM OFF ", 330, 150, 140, 50, RGB(white), RGB(blue)
GUI LED ALARM_LED, 215, 220, 30, RGB(red)
'…
DO : LOOP ' the main program is doing something

' this sub is called when a mouse click is detected
SUB MouseClick
 SELECT CASE CLICK(REF)
 CASE ALARM_ON
 CtrlVal(ALARM_LED) = 1
 CASE ALARM_OFF
 CtrlVal(ALARM_LED) = 0
 END SELECT
END SUB

The SELECT CASE can also test for other controls and perform whatever actions are required for them in their
own section of the CASE statement.

The important point is that the maintenance of the controls (eg, responding to the buttons and turning the alarm
LED off or on) is done automatically without the main program being involved – it can continue doing
something useful like calculating some control response, etc.

Mouse Up Interrupt
In most cases you can process all user input in the mouse down interrupt. But there are exceptions and a typical
example is when you need to change the characteristics of the control that is being activated. For example, if
you wanted to change the foreground colour of a button from white to red when it is down. When it is returned
to the up state the colour should revert to white.

Setting the colour on the mouse click is easy. Just define a mouse down interrupt and change the colour in the
interrupt when that control is activated by the mouse click. However, to return the colour to white you need to
detect when the mouse click has been removed from the control. This can be done with a mouse up interrupt.

To specify a mouse up interrupt you add the name of the subroutine for this interrupt to the end of the GUI
INTERRUPT command. For example:
GUI INTERRUPT IntMouseDown, IntMouseUp

Within the mouse up subroutine you can use the same structure as in the mouse down sub but you need to find
the reference number of the last control that was activated. This is because the mouse click has already been
terminated and no control is currently being activated by the mouse. To get the number of the last control
activated you need to use the function CLICK(LASTREF)

Micromite Plus Manual Page 13

The following example shows how you could meet the above requirement and implement both a mouse down
and a mouse up interrupt:
SUB IntMouseDown
 SELECT CASE CLICK(REF)
 CASE ButtonRef
 GUI FCOLOUR RGB(RED), ButtonRef
 END SELECT
END SUB

SUB IntMouseUp
 SELECT CASE CLICK(LASTREF)
 CASE ButtonRef
 GUI FCOLOUR RGB(WHITE), ButtonRef
 END SELECT
END SUB

Keep Interrupts Very Short
Because a mouse click interrupt indicates a request by the user it is tempting to do some extensive
programming within an interrupt. For example, if the control activated indicates that the user wants to send a
message to another controller it sounds logical to put all that code within the interrupt. But this is not a good
idea because MMBasic cannot do anything else while your program is processing the interrupt and sending a
message could take many milliseconds.

Instead your program should update a global variable to indicate what is requested and leave the actual
execution to the main program. For example, if the user did click on the "send a message" button your program
could simply set a global variable to true. Then the main program can monitor this variable and if it changes
perform the logic and communications required to satisfy the request.

Remember the commandment "Thou shalt not hang around in an interrupt”.

Multiple Screens
Your program might need a number of screens with differing controls on each screen. This could be
implemented by deleting the old controls and creating new ones when the screen is switched. But another way
to do this is to use the GUI SETUP and GUI PAGE commands. These allow you to organise the controls onto
pages and with one simple command you can switch pages. All controls on the old page will be automatically
hidden and controls on the new page will be automatically shown.

To allocate controls to a page you use the GUI SETUP nn command where nn refers to the page in the range of
1 to 32. When you have used this command any newly created controls will be assigned to that page. You can
use GUI SETUP as many times that you want. For example, in the program fragment below the first two
controls will be assigned to page 1, the second to page 2, etc.
GUI SETUP 1
GUI Caption #1, "Flow Rate", 20, 170,, RGB(brown),0
GUI Displaybox #2, 20, 200, 150, 45

GUI SETUP 2
GUI Caption #3, "High:", 232, 260, LT, RGB(yellow)
GUI Numberbox #4, 318, 6,90, 12, RGB(yellow), RGB(64,64,64)

GUI SETUP 3
GUI Checkbox #5, "Alarms", 500, 285, 25
GUI Checkbox #6, "Warnings", 500, 325, 25

By default only the controls setup as page 1 will be displayed and the others will be hidden.

To switch the screen to page 3 all you need do is use the command GUI PAGE 3. This will cause controls #1
and #2 to be automatically hidden and controls #5 and #6 to be displayed. Similarly GUI PAGE 2 will hide
all except #3 and #4 which will be displayed.

You can specify multiple pages to display at the one time, for example, GUI PAGE 1,3 will display both pages 1
and 3 while hiding page 2. This can be useful if you have a set of controls that must be visible all the time. For
example, GUI PAGE 1,2 and GUI PAGE 1,3 will leave the controls on page 1 visible while the others are
switched on and off.

Micromite Plus Manual Page 14

It is perfectly legal for a program to modify controls on other pages even though they are not displayed at the
time. This includes changing the value and colours as well as disabling or hiding them. When the display is
switched to their page the controls will be displayed with their new attributes.

It is possible to place the GUI PAGE commands in the mouse down interrupt so that pressing a certain control
or part of the screen will switch to another page.

Note that when ALL is used for the list of controls in commands such as GUI ENABLE ALL this only refers to
the controls on the pages that are currently selected for display. Controls on other pages will be unaffected.

All programs start with the equivalent of the commands GUI SETUP 1 and GUI PAGE 1 in force. This means
that if the GUI SETUP and GUI PAGE commands are not used the program will run as you would expect with
all controls displayed.

A typical usage of the GUI PAGE command is shown below. Two buttons (which are always displayed) allow
the user to select between the first page and the second page. The switch is done in the mouse down interrupt.
GUI SETUP 1
GUI Button #10, "SELECT PAGE ONE", 50, 100, 150, 30, RGB(yellow), RGB(blue)
GUI Button #11, "SELECT PAGE TWO", 50, 140, 150, 30, RGB(yellow), RGB(blue)

GUI SETUP 2
GUI Caption #1, "Displaying First Page", 20, 20

GUI SETUP 3
GUI Caption #2, "Displaying Second Page", 20, 50

Page 1, 2
GUI INTERRUPT MouseDown
Do
 ' the main program loop
Loop

Sub MouseDown
 If CLICK(REF) = 10 Then GUI Page 1, 2
 If CLICK(REF) = 11 Then GUI Page 1, 3
End Sub

Multiple Interrupts
With many screen pages the interrupt subroutine could get long and complicated. To work around that it is
possible to have multiple interrupt subroutines and switch dynamically between them as you wish (normally
after switching pages). This is done by redefining the current interrupt routines using the GUI INTERRUPT
command.

For example, this program fragment uses different interrupt routines for pages 4 and 5 and they are specified
immediately after switching the pages.
GUI PAGE 4
GUI INTERRUPT P4keydown, P4keyup
...
GUI PAGE 5
GUI INTERRUPT P5keydown, P5keyup
...

Using Basic Drawing Commands
There are two types of objects that can be on the screen. These are the GUI controls and the basic drawing
objects (PIXEL, LINE, TEXT, etc). Mixing the two on the screen is not a good idea because MMBasic does
not track the position of the basic drawing objects and they can clash with the GUI controls.

As a result, unless you are prepared to do some extra programming, you should use either the GUI controls or
the basic drawing objects – but you should not use both. So, for example, do not use TEXT but use GUI
CAPTION instead. If you only use GUI controls MMBasic will manage the screen for you including erasing
and redrawing it as required, for example when a virtual keyboard is displayed.

Note that the CLS command (used to clear the screen) will automatically set any GUI controls on the screen to
hidden (ie, it does a GUI HIDE ALL before clearing the screen).

Micromite Plus Manual Page 15

The main problem with mixing basic graphics and GUI controls occurs with the Text Box, Formatted Box and
Number Box controls which display a virtual keyboard. This can erase any basic graphics and MMBasic will
not know to restore them when the keyboard is removed. If you want to mix basic graphics with GUI controls
you should:

 Intercept the mouse down interrupt for the Text Box, Formatted Box and Number Box controls as that
indicates that a virtual keyboard is about to be displayed and that will give you the opportunity to redraw
your non GUI basic graphics in anticipation of this event (for example, draw them in a dimmed state to
appear as if they are disabled).

 Intercept the mouse up interrupt for the same controls as that indicates that the virtual keyboard has been
removed and you could then redraw any non GUI graphics in their original state.

The following example demonstrates this technique. This initially draws a box filled with bright blue using the
basic drawing commands. Then, when the number pad is about to pop up it will redraw the box in a dull
colour. Finally, when the keypad is removed from the screen the mouse up interrupt will redraw the box in its
original colours.
GUI INTERRUPT MouseDownInterrupt, MouseUpInterrupt
BOX 400, 250, 300, 200, , RGB(WHITE), RGB(BLUE)
GUI NUMBERBOX 1, 318,100,90,40,RGB(YELLOW),RGB(64,64,64)
DO : LOOP

SUB MouseDownInterrupt
 IF CLICK(REF) = 1 THEN BOX 400, 250, 300, 200, , RGB(128,128,128), RGB(0,0,128)
END SUB

SUB MouseUpInterrupt
 IF CLICK(LASTREF) = 1 THEN BOX 400, 250, 300, 200, , RGB(WHITE), RGB(BLUE)
END SUB

Overlapping Controls
Controls can be defined to overlap on the display, this mostly occurs with GUI AREA which, as an example,
you might want to capture a mouse click that was intended for (say) a GUI BUTTON. This will allow you to
create your own animation for the button rather than that provided by MMBasic. In this case the control that
you wish to respond to the mouse input (ie, GUI AREA) should have a lower reference number (ie, #ref) than
the control that it is covering (ie, the GUI BUTTON). This is because when the screen is clicked on MMBasic
will check the current list of active controls starting with control number 1 and working upwards. When a
match is made MMBasic will take the appropriate action and terminate the search. This results in the lower
numbered control effectively masking out a higher numbered control covering the same screen area as the
location clicked on.

Micromite Plus Manual Page 16

Example Program
As a test you can enter the following "Pump Control" demonstration program. It will draw a selection of
advanced controls as shown below. These controls are active so that you can test how they work.

'''
' Demonstration program for the CMM2
' It does not do anything useful except demo the various controls
'
' Geoff Graham, October 2015
'''
Option Explicit
Dim ledsY
mode 10
option console serial
Colour RGB(white), RGB(black)
' reference numbers for the controls are defined as constants
Const c_head = 1, c_pmp = 2, sw_pmp = 3, c_flow = 4, tb_flow = 5
Const led_run = 6, led_alarm = 7
Const frm_alarm = 20, nbr_hi = 21, nbr_lo = 22, pb_test =23
Const c_hi = 24, c_lo = 25
Const frm_pump = 30, r_econ = 31, r_norm = 32, r_hi = 33
Const frm_log = 40, cb_enabled = 41, c_fname = 42, tb_fname = 43
Const c_log = 44, cb_flow = 45, cb_pwr = 46, cb_warn = 47
Const cb_alarm = 48, c_bright = 49, sb_bright = 50
' now draw the "Pump Control" display
'CLS
dim integer x, y, lb, rb, sb, xs, ys, cs, ss
'sprite load "mouse.spr",1
gui cursor on 0, mm.hres\2,mm.vres\2
GUI Interrupt TouchDown, TouchUp
' display the heading
Font 2,2 : GUI Caption c_head, "Pump Control", 10, 0
Font 3 : GUI Caption c_pmp, "Pump", 20, 60, , RGB(brown)
' now, define and display the controls
' first
GUI Switch sw_pmp, "ON|OFF", 20, 90, 150, 50, RGB(white),RGB(brown)
CtrlVal(sw_pmp) = 1
' the flow rate display box

Micromite Plus Manual Page 17

Font 3 : GUI Caption c_flow, "Flow Rate", 20, 170,, RGB(brown),0
Font 4 : GUI Displaybox tb_flow, 20, 200, 150, 45
CtrlVal(tb_flow) = "20.1"
' the radio buttons and their frame
Font 3 : GUI Frame frm_pump, "Power", 20, 290, 170, 163,RGB(200,20,255)
GUI Radio r_econ, "Economy", 40, 318, 15, RGB(230, 230, 255)
GUI Radio r_norm, "Normal", 40, 364
GUI Radio r_hi, "High", 40, 408
CtrlVal(r_norm) = 1 ' start with the "normal" button selected
' the alarm frame with two number boxes and a push button switch
Font 3 : GUI Frame frm_alarm, "Alarm", 220, 220, 200, 233,RGB(green)
GUI Caption c_hi, "High:", 232, 260, LT, RGB(yellow)
GUI Numberbox nbr_hi, 318,MM.info(VPos)-
6,90,MM.info(FontHeight)+12,RGB(yellow),RGB(64,64,64)
GUI Caption c_lo, "Low:", 232, 325, LT, RGB(yellow),0
GUI Numberbox nbr_lo, 318,MM.info(VPos)-
6,90,MM.info(FontHeight)+12,RGB(yellow),RGB(64,64,64)
GUI Button pb_test, "TEST", 257, 383, 130, 40,RGB(yellow), RGB(red)
CtrlVal(nbr_lo) = 15.7 : CtrlVal(nbr_hi) = 35.5
' draw the two LEDs
Const ledsX = 240, coff = 50 ' define their position
ledsY = 90 : GUI LED led_run, "Running", ledsX, ledsY, 15, RGB(green)
ledsY = ledsY+49 : GUI LED led_alarm, "Alarm", ledsX, ledsY, 15, RGB(red)
CtrlVal(led_run) = 1 ' the switch defaults to on so set the LED on
' the logging frame with check boxes and a text box
Colour RGB(cyan), 0
GUI Frame frm_log, "Log File", 450, 20, 330, 355, RGB(green)
GUI Checkbox cb_enabled, "Logging Enabled", 470, 50, 30, RGB(cyan)
GUI Caption c_fname, "File Name", 470, 105
GUI Textbox tb_fname, 470, 135, 290, 40, RGB(cyan), RGB(64,64,64)
GUI Caption c_log, "Record:", 470, 205, , RGB(cyan), 0
GUI Checkbox cb_flow, "Flow Rate", 500, 245, 25
GUI Checkbox cb_alarm, "Alarms", 500, 285, 25
GUI Checkbox cb_warn, "Warnings", 500, 325, 25
CtrlVal(cb_enabled) = 1
CtrlVal(tb_fname) = "LOGFILE.TXT"
' define and display the spinbox for controlling the backlight
GUI Caption c_bright, "Backlight", 442, 415,,RGB(200,200,255),0
GUI Spinbox sb_bright, MM.info(HPos) + 8, 400, 200, 50,,,10, 10, 100
CtrlVal(sb_bright) = 50
' All the controls have been defined and displayed. At this point
' the program could do some real work but because this is just a
' demo there is nothing to do. So it just sits in a loop.
Do
Loop
' the interrupt routine for touch down
' using a select case command it has a different process for each
' control
Sub TouchDown
local integer mbox
' print "down"
Select Case click(REF) ' find out the control touched
Case cb_enabled ' the enable check box
 If CtrlVal(cb_enabled) Then
 GUI Restore c_fname, tb_fname, c_log, cb_flow, cb_alarm, cb_warn
 Else
 mbox=MsgBox("Are you sure?", "YES","CANCEL")
' print mbox
 if mbox=1 then
 GUI Disable c_fname, tb_fname, c_log, cb_flow, cb_alarm, cb_warn
 else
 CtrlVal(cb_enabled)=1
 endif
 EndIf
Case sb_bright ' the brightness spin box
' BackLight CtrlVal(sb_bright)
Case sw_pmp ' the pump on/off switch

Micromite Plus Manual Page 18

 CtrlVal(led_run) = CtrlVal(sw_pmp)
 CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 20.1)
 CtrlVal(r_norm) = 1
Case pb_test ' the alarm test button
 CtrlVal(led_alarm) = 1
' GUI beep 250
Case r_econ ' the economy radio button
 CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 18.3)
Case r_norm ' the normal radio button
 CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 20.1)
Case r_hi ' the high radio button
 CtrlVal(tb_flow) = Str$(CtrlVal(sw_pmp) * 23.7)
End Select
End Sub
' interrupt routine when the touch is removed
Sub TouchUp
Select Case click(LASTREF) ' use the last reference
Case pb_test ' was it the test button
 CtrlVal(led_alarm) = 0 ' turn off the LED
End Select
End Sub
'
Function MM.CURSOR(t As Integer) As Integer
Static Float lasttime
If Timer > lasttime + 20 Or timer < lasttime Then
 X = Mouse(x,1)
 Y = Mouse(y,1)
 Lb = Mouse(l,1)
 lasttime = Timer
 Gui Cursor x,y
EndIf
MM.CURSOR = -1
If t = 1 Then
 MM.CURSOR = lb
ElseIf t = 2 Then
 If lb Then MM.CURSOR = x
ElseIf t = 3 Then
 If lb Then MM.CURSOR = y
ElseIf t = 4 Then
 MM.CURSOR = lb
Else
 MM.CURSOR = lb
EndIf
End Function
'
Sub MM.Beep beeptime As Integer
If beeptime And MM.Info(Sound) = "OFF" Then Play Tone 600, 600, beeptime
End Sub

Micromite Plus Manual Page 19

Commands (GUI Functions Only)
Detailed Listing
CTRLVAL(#ref) = This command will set the value of an advanced control.

'#ref' is the control's reference number.

For off/on controls like check boxes it will override any mouse input and can be
used to depress/release switches, tick/untick check boxes, etc. A value of zero
is off or unchecked and non zero will turn the control on. For a LED it will
cause the LED to be illuminated or turned off. It can also be used to set the
initial value of spin boxes, text boxes, etc.
For example:
 CTRLVAL(#10) = 12.4

GUI AREA #ref, startX,
startY, width, height

This will define an invisible area of the screen that is sensitive to a mouse click
and will generate mouse down and mouse up interrupts. It can be used as the
basis for creating custom controls which are defined and managed by the
program.

'#ref' is the control's reference number. 'startX' and 'startY' are the top left
coordinates while 'width' and 'height' set the dimensions.

GUI BCOLOUR colour,
#ref1 [, #ref2, #ref3, etc]

This will change the background colour of the specified controls to 'colour'
which is an RGB value for the drawing colour.

'#ref' is the control's reference number.

GUI BARGAUGE #ref,
StartX, StartY, width,
height, FColour, BColour,
min, max, c1, ta, c2, tb, c3,
tc, c4

Define either a horizontal or vertical analogue bar gauge.

'#ref' is the control's reference number.

'StartX' and 'StartY' are the top left coordinates of the bar while 'width' is the
horizontal width and 'height' the vertical height. If the width is less that the
height the bar gauge will be drawn vertically with the graph growing from the
bottom towards the top. Otherwise it will be drawn horizontally with the graph
growing from the left towards the right.
'Fcolour' is the colour used for the gauge while 'Bcolour' is the background
colour. 'min' is the minimum value of the gauge and 'max' is the maximum
value (both floating point).
A multi colour gauge can be created using 'c1' to 'c4' for the colours and 'ta' to
'tc' for the thresholds used to determine when the colour will change.
'width', 'height', 'FColour', 'BColour', 'min' and 'max' are optional and will
default to the values used in the previous definition of a GUI BARGAUGE.
'c1', 'ta', 'c2', 'tb', 'c3', 'tc' and 'c4' are optional and if not specified the gauge will
use less colours. If all are omitted the gauge will be drawn using 'Fcolour'.
The section GUI Controlls has a more detailed description.

GUI BUTTON #ref,
caption$, startX, startY,
width, height [, FColour]
[,BColour]

This will draw a momentary button which is a square switch with the caption
on its face.
When clicked on the visual image of the button will appear to be depressed and
the control's value will be 1. When the mouse click is removed the value will
revert to zero.

#ref' is the control's reference (a number from 1 to 100).

'caption$' is the string to display on the face of the button. It can be a single
string with two captions separated by a | character (eg, "UP|DOWN"). When
the button is up the first string will be used and when pressed the second will be
used.

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set the
dimensions. ' FColour and 'BColour' are RGB values for the foreground and

Micromite Plus Manual Page 20

background colours.

'width', 'height', FColour and 'BColour' are optional and default to that used in
previous controls or set with the COLOUR command.

GUI CAPTION #ref, text$,
startX, startY [,align$]
[, FColour] [, BColour]

This will draw a text string on the screen.

'#ref' is the control's reference number.

'text$' is the string to display. 'startX' and 'startY' are the top left coordinates.

'align$' is zero to three characters (a string expression or variable is also
allowed) where the first letter is the horizontal alignment around X and can be
L, C or R for LEFT, CENTER, RIGHT and the second letter is the vertical
alignment around Y and can be T, M or B for TOP, MIDDLE, BOTTOM. A
third character can be used in the string to indicate the rotation of the text. This
can be 'N' for normal orientation, 'V' for vertical text with each character under
the previous running from top to bottom, 'I' the text will be inverted (ie, upside
down), 'U' the text will be rotated counter clockwise by 90º and 'D' the text will
be rotated clockwise by 90º. The default alignment is left/top with no rotation.

'FColour and 'BColour' are RGB values for the foreground and background
colours. On a display that supports transparent text BColour can be -1 which
means that the background will show through the gaps in the characters.

FColour and 'BColour' are optional and default to the colours set by the
COLOUR command.

GUI CHECKBOX #ref,
caption$, startX, startY [,
size] [, colour]

This will draw a check box which is a small box with a caption. When clicked
on with the mouse an X will be drawn inside the box to indicate that this option
has been selected and the control's value will be set to 1. When clicked a
second time the check mark will be removed and the control's value will be
zero.

'#ref' is the control's reference number.

The string 'caption$' will be drawn to the right of the control using the colours
set by the COLOUR command.

 'startX' and 'startY' are the top left coordinates while 'size' set the height and
width (the bix is square). 'colour' is an RGB value for the drawing colour. 'size'
and 'colour' are optional and default to that used in previous controls.

GUI DELETE #ref1 [,#ref2,
#ref3, etc]
or
GUI DELETE ALL

This will delete the controls in the list. This includes removing the image of the
control from the screen using the current background colour and freeing the
memory used by the control.

'#ref' is the control's reference number. The keyword ALL can be used as the
argument and that will disable all controls on the currently visible pages.

GUI DISABLE #ref1
[,#ref2, #ref3, etc]
or
GUI DISABLE ALL

This will disable the controls in the list. Disabled controls do not respond to a
mouse click and will be displayed dimmed.

'#ref' is the control's reference number. The keyword ALL can be used as the
argument and that will disable all controls on the currently visible pages.

GUI ENABLE can be used to restore the controls.

GUI DISPLAYBOX #ref,
startX, startY, width, height,
FColour, BColour

This will draw a box with rounded corners that can be used to display a string

'#ref' is the control's reference number.

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set the
dimensions. ' FColour and 'BColour' are RGB values for the foreground and
background colours. 'width', 'height', FColour and 'BColour' are optional and
default to that used in previous controls.

Any text can be displayed in the box by using the CtrlVal(r) = command. This

Micromite Plus Manual Page 21

is useful for displaying text, numbers and messages.

This control does not respond to a mouse click.

GUI ENABLE #ref1
[,#ref2, #ref3, etc]
or
GUI ENABLE ALL

This will undo the effects of GUI DISABLE and restore the control(s) to
normal operation.

'#ref' is the control's reference number. The keyword ALL can be used as the
argument and that will enable all controls on the currently visible pages.

GUI FCOLOUR colour,
#ref1 [, #ref2, #ref3, etc]

This will change the foreground colour of the specified controls to 'colour'
which is an RGB value for the drawing colour.

'#ref' is the control's reference number.

GUI FRAME #ref,
caption$, startX, startY,
width, height, colour

This will draw a frame which is a box with round corners and a caption.

'#ref' is the control's reference number.

'caption$' is a string to display as the caption. 'startX' and 'startY' are the top
left coordinates while 'width' and 'height' set the dimensions. 'colour' is an RGB
value for the drawing colour. 'width', 'height' and 'colour' are optional and
default to that used in previous controls.

A frame is useful when a group of controls need to be visually brought together.
It is also used to surround a group of radio buttons and MMBasic will arrange
for the radio buttons surrounded by the frame to be exclusive. ie, when one
radio button is selected any other button that was selected and within the frame
will be automatically deselected.

A frame does not respond to a mouse click.

GUI FORMATBOX #ref,
Format, startX, startY,
width, height, FColour,
BColour

This will draw a box with rounded corners. When this is clicked on using the
mouse a virtual keypad will appear allowing the entry of data using a specific
format.

'#ref' is the control's reference number.

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set the
dimensions. ' FColour and 'BColour' are RGB values for the foreground and
background colours. 'width', 'height', FColour and 'BColour' are optional and
default to that used in previous controls.

The 'Format' argument specifies the format of the entry as follows:

DATE1 Date in UK/Aust/NZ format (dd/mm/yy)
DATE2 Date in USA format (mm/dd/yy)
DATE3 Date in international format (yyyy/mm/dd)
TIME1 Time in 24 hour notation (hh:mm)
TIME2 Time in 24 hour notation with seconds (hh:mm:ss)
TIME3 Time in 12 hour notation (hh:mm AM/PM)
TIME4 Time in 12 hour notation with seconds (hh:mm:ss AM/PM)
DATETIME1 Date (UK fmt) and time (12 hour) (dd/mm/yy hh:mm AM/PM)
DATETIME2 Date (UK fmt) and time (24 hour) (dd/mm/yy hh:mm)
DATETIME3 Date (USA fmt) and time (12 hour) (mm/dd/yy hh:mm AM/PM)
DATETIME4 Date (USA fmt) and time (24 hour) (mm/dd/yy hh:mm)
LAT1 Latitude in degrees, minutes and seconds (dd° mm' ss" N/S)
LAT2 Latitude with seconds to one decimal place (dd° mm' ss.s" N/S)
LONG1 Longitude in degrees, minutes and seconds (ddd° mm' ss" E/W)
LONG2 Longitude seconds to one decimal place (ddd° mm' ss.s" E/W)
ANGLE1 Angle in degrees and minutes (ddd° mm')

For example, this command:
 GUI FORMATBOX #1, LAT1, 50, 50, 300, 50

would create a format box which would accept the entry of latitude in the

Micromite Plus Manual Page 22

format of dd° mm' ss" N/S. The value of CtrlVal(#1) would be a string which
includes the numbers and separating characters. For example an entry of 17
degrees, 32 minutes and 1 second south would result in the string 17° 32' 01" S

MMBasic will try to position the virtual keypad on the screen so as to not
obscure the format box that caused it to appear. A mouse down interrupt will
be generated just before the keypad is deployed and a mouse up interrupt will
be generated when the entry is complete and the keypad is hidden.

GUI FORMATBOX
CANCEL

This will dismiss a virtual keypad if it is displayed on the screen. It is the same
as if the user clicked on the cancel key except that the mouse up interrupt is not
generated. If a keypad is not displayed this command will do nothing.

GUI GAUGE #ref, StartX,
StartY, Radius, FColour,
BColour, min, max, nbrdec,
units$, c1, ta, c2, tb, c3, tc,
c4

Define a graphical circular analogue gauge with a digital display in the centre.

'#ref' is the control's reference number.

'StartX' and 'StartY' are the coordinates of the centre of the gauge, 'Radius' is
the distance from the centre to the outer edge.
'min' is the minimum value of the gauge and 'max' is the maximum value (both
floating point).
'nbrdec' specifies the number of decimal places to be used when drawing the
digital value in the centre of the gauge. Under this 'units$' will be displayed.
'Fcolour' is the colour used for the gauge while 'Bcolour' is the background
colour. A multi colour gauge can be created using 'c1' to 'c4' for the colours and
'ta' to 'tc' for the thresholds used to determine when the colour will change.
When colours and thresholds are specified the background of the gauge will be
drawn with a dull version of the colour at that level. Also the digital value will
change to the colour specified by the current value.
'Radius', 'FColour', 'BColour', 'min', 'max', 'nbrdec' and 'units$' are optional and
will default to the values used in the previous definition of a GUI GAUGE.
'c1', 'ta', 'c2', 'tb', 'c3', 'tc' and 'c4' are optional and if not specified the gauge will
use less colours. If all are omitted the gauge will be drawn using 'Fcolour'.
The section GUI Controls has a more detailed description.

GUI HIDE #ref1 [,#ref2,
#ref3, etc]
or
GUI HIDE ALL

This will hide the controls in the list. Hidden controls do not respond to a
mouse click and will not be visible.

'#ref' is the control's reference number. The keyword ALL can be used as the
argument and that will hide all controls on the currently visible pages.

GUI SHOW can be used to restore the controls.

GUI INTERRUPT down [,
up]

This command will setup an interrupt that will be triggered on a mouse click
and optionally when the mouse click is released.
'down' is the subroutine to call when a mouse down has been detected. 'up' is
the subroutine to call when the mouse click has been lifted from the screen ('up'
and 'down' can point to the same subroutine if required).
Specifying the number zero (single digit) as the argument will cancel both of
these interrupts. ie:
 GUI INTERRUPT 0

GUI LED #ref, caption$,
centerX, centerY, radius,
colour

This will draw an indicator light which looks like a panel mounted LED. A
LED does not respond to a mouse click.

'#ref' is the control's reference number.

The string 'caption$' will be drawn to the right of the control using the colours
set by the COLOUR command.

'centerX' and 'centerY' are the coordinates of the centre of the LED and 'radius'
is the radius of the LED. 'colour' is an RGB value for the drawing colour.

Micromite Plus Manual Page 23

'radius' and 'colour' are optional and default to that used in previous controls.

When a LED's value is set to a value of one it will be illuminated and when it is
set to zero it will be off (a dull version of its colour attribute). The LED can be
made to flash on then off by setting the value of the LED to a number greater
than one which is the time in milliseconds that it should remain on.

The colour can be changed with the GUI FCOLOUR command.

GUI NUMBERBOX #ref,
startX, startY, width, height,
FColour, BColour

This will draw a box with rounded corners. When this is clicked on using the
mouse a virtual keypad will appear allowing the entry of numeric data.

'#ref' is the control's reference number.

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set the
dimensions. ' FColour and 'BColour' are RGB values for the foreground and
background colours. 'width', 'height', FColour and 'BColour' are optional and
default to that used in previous controls.

When the box is clicked on a numeric keypad will appear on the screen. Using
this virtual keypad any number can be entered into the box including a floating
point number in exponential format. The new number will replace the number
previously in the box.

The value of the control can set to a literal string (not an expression) starting
with two hash characters. For example:

CtrlVal(nnn) = "##Enter Number"
and in that case the string (without the leading two hash characters) will be
displayed in the box with reduced brightness. This can be used to give the user
a hint as to what should be entered (called "ghost text"). Reading the value of
the control displaying ghost text will return zero. When the control is used
normally the ghost text will vanish.

MMBasic will try to position the virtual keypad on the screen so as to not
obscure the number box that caused it to appear. A mouse down interrupt will
be generated just before the keypad is deployed and a mouse up interrupt will
be generated when the Enter key is clicked on and the keypad is hidden. Also,
when the Enter key is clicked the entered number will be evaluated as a number
and the NUMBERBOX control redrawn to display this number.

GUI NUMBERBOX
CANCEL

This will dismiss the virtual number keypad if it is displayed on the screen. It
is the same as if the user clicked on the cancel key except that the mouse up
interrupt is not generated. If a keypad is not displayed this command will do
nothing.

GUI PAGE #n [,#n2, #n3,
etc]

This will switch the display to show controls that have been assigned (via the
GUI SETUP command) to the page numbers specified in the parameter list (#n,
#n2, etc). Any controls that were displayed but are not on the current list of
pages will be automatically hidden. Any controls on a page that was displayed
on the old screen and is also specified in the new PAGE command will remain
unaffected.

The default when a program starts running is GUI PAGE 1 and GUI SETUP 1.
This means that if these commands are not used the program will run as normal
showing all GUI controls that have been defined.

See also the GUI SETUP command.

Micromite Plus Manual Page 24

GUI RADIO #ref, caption$,
centerX, centerY, radius,
colour

This will draw a radio button with a caption.

'#ref' is the control's reference number.

The string 'caption$' will be drawn to the right of the control using the colours
set by the COLOUR command.

'centerX' and 'centerY' are the coordinates of the centre of the button and
'radius' is the radius of the button. 'colour' is an RGB value for the drawing
colour. 'radius' and 'colour' are optional and default to that used in previous
controls.

When clicked on the centre of the button will be illuminated to indicate that this
option has been selected and the control's value will be 1. When another radio
button is selected the mark on this button will be removed and its value will be
zero. Radio buttons are grouped together when surrounded by a frame and
when one button in the group is selected all others in the group will be
deselected. If a frame is not used all buttons on the screen will be grouped
together.

GUI REDRAW #ref1
[,#ref2, #ref3, etc]
or
GUI REDRAW ALL

This will redraw the controls on the screen. It is useful if the screen image has
somehow been corrupted.

'#ref' is the control's reference number. The keyword ALL can be used as the
argument and that will first clear the screen then redraw all controls on the
currently selected pages. This is useful if the whole screen needs to be
refreshed.

GUI SETUP #n This will allocate any new controls created to the page '#n'. This command can
be used as many times as needed while GUI controls are being defined. The
default when a program starts running is GUI SETUP 1.

See also the GUI PAGE command.

GUI SHOW #ref1 [,#ref2,
#ref3, etc]
or
GUI SHOW ALL

This will undo the effects of GUI HIDE and restore the control(s) to being
visible and capable of normal operation.

'#ref' is the control's reference number. The keyword ALL can be used as the
argument and that will disable all controls on the currently displayed pages.

GUI SPINBOX #ref, startX,
startY, width, height,
FColour, BColour, Step,
Minimum, Maximum

This will draw a box with up/down icons on either end. When these icons are
clicked on using the mouse the number in the box will be incremented or
decremented. Holding down the up/down icons will repeat the step at a fast
rate.

'#ref' is the control's reference number.

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set the
dimensions. ' FColour and 'BColour' are RGB values for the foreground and
background colours.

'width', 'height', FColour and 'BColour' are optional and default to that used in
previous controls.

'Step' sets the amount to increment/decrement the number with each mouse
click. 'Minimum' and 'Maximum' set limits on the number that can be entered.
All three parameters can be floating point numbers and are optional. The
default for 'Step' is 1 and 'Minimum' and 'Maximum' if omitted will default to
no limit.

Micromite Plus Manual Page 25

GUI SWITCH #ref,
caption$, startX, startY,
width, height, FColour,
BColour

This will draw a latching switch which is a square switch that latches when
clicked on using the mouse.

'#ref' is the control's reference number.

'caption$' is a string to display as the caption on the face of the switch. 'startX'
and 'startY' are the top left coordinates while 'width' and 'height' set the
dimensions. ' FColour and 'BColour' are RGB values for the foreground and
background colours. 'width', 'height', FColour and 'BColour' are optional and
default to that used in previous controls.

When clicked on the visual image of the button will appear to be depressed and
the control's value will be 1. When clicked on a second time the switch will be
released and the value will revert to zero. Caption can consist of two captions
separated by a | character (eg, "ON|OFF"). When this is used the switch will
appear to be a toggle switch with each half of the caption used to label each half
of the toggle switch.

GUI TEXTBOX #ref,
startX, startY, width, height,
FColour, BColour

This will draw a box with rounded corners. When this is clicked on using the
mouse a virtual keypad will appear allowing for the entry of text data

'#ref' is the control's reference number.

'startX' and 'startY' are the top left coordinates while 'width' and 'height' set the
dimensions. ' FColour and 'BColour' are RGB values for the foreground and
background colours. 'width', 'height', FColour and 'BColour' are optional and
default to that used in previous controls. On a display that supports transparent
text BColour can be -1 which means that the background will show through the
gaps in the characters.

When the box is clicked on a QWERTY keyboard will appear on the screen.
By clicking on this virtual keyboard any text can be entered into the box
including upper/lower case letters, numbers and any other characters in the
ASCII character set. The new text will replace any text previously in the box.

The value of the control can set to a string starting with two hash characters.
For example:

CtrlVal(nnn) = "##Enter Filename"
and in that case the string (without the leading two hash characters) will be
displayed in the box with reduced brightness. This can be used to give the user
a hint as to what should be entered (called "ghost text"). Reading the value of
the control displaying ghost text will return an empty string. When the control
is used normally the ghost text will vanish.

MMBasic will try to position the virtual keyboard on the screen so as to not
obscure the text box that caused it to appear. A mouse down interrupt will be
generated just before the keyboard is deployed and a mouse up interrupt will be
generated when the Enter key is clicked and the keyboard is hidden.

GUI TEXTBOX CANCEL This will dismiss a virtual text keyboard if it is displayed on the screen. It is the
same as if the user clicked on the cancel key except that the mouse up interrupt
is not generated. If a keyboard is not displayed this command will do nothing.

OPTION MAXCTRLS n Used to set the maximum number of GUI controls that can be used.

This option is permanent (ie, it will be remembered on power down). By
default the maximum number of controls is set to zero, in this case the GUI
features are not available and no memory will be used..

Typically you would set the number to 100. ie, OPTION MAXCTRLS 100

Micromite Plus Manual Page 26

Functions (GUI Functions Only)
Detailed Listing

CTRLVAL(#ref) Returns the current value of an advanced control.

'#ref' is the control's reference.

For controls like check boxes or switches it will be the number one (true)
indicating that the control has been selected by the user or zero (false) if not.
For controls that hold a number (eg, a SPINBOX) the value will be the number
(normally a floating point number). For controls that hold a string (eg,
TEXTBOX) the value will be a string.

MSGBOX (msg$, b1$
[,b2$ … b4$])

This function will display a message box on the screen with one to four mouse
sensitive buttons. All other controls will be disabled until the user clicks on
one of the buttons. The message box will then be erased, the previous controls
will be restored and the function will return the number of the button selected
(the first button is number one)
'msg$' is the message to display. This can contain one or more tilde characters
(~) which indicate a line break. Up to 10 lines can be displayed inside the box.
'b1$' is the caption for the first button, 'b2$' is the caption for the second
button, etc. At least one button must be specified and four is the maximum.
Any buttons not included in the argument list will not be displayed.

CLICK(DOWN) Will return true if the screen is currently being clicked on using the mouse.

CLICK(UP) Will return true if the screen is currently NOT being clicked on.

CLICK(LASTX) Will return the X coordinate of the last location that was clicked on.

CLICK(LASTY) Will return the Y coordinate of the last location that was clicked on.

CLICK(REF) Will return the reference number of the control that is currently being clicked
on or zero if no control is currently being clicked on.

CLICK(LASTREF) Will return the reference number of the last control that was clicked on.

	GUI Functionality
	GUI Controls
	Frame
	LED
	Check Box
	Push Button
	Switch
	Radio Button
	Display Box
	Text Box
	Number Box
	Formatted Number Box
	Spin Box
	Caption
	Circular Gauge
	Bar Gauge
	Area
	Interacting with Controls
	MsgBox()

	GUI Programming Techniques
	The User Should Be In Control
	Program Structure
	Disable Invalid Controls
	Use Constants for Control Reference Numbers
	The Main Program Is Still Running
	Use Interrupts and SELECT CASE Statements
	Mouse Up Interrupt
	Keep Interrupts Very Short
	Multiple Screens
	Multiple Interrupts
	Using Basic Drawing Commands
	Overlapping Controls

	Example Program
	Commands (GUI Functions Only)
	Detailed Listing
	CTRLVAL
	GUI AREA
	GUI BCOLOUR
	GUI BARGAUGE
	FColour', 'BColour', 'min' and 'max' are optional and will
	default to the values used in the previous definition of a GUI BARGAUGE.
	'c1', 'ta', 'c2', 'tb', 'c3', 'tc' and 'c4' are optional and if not specified the gauge will
	use less colours. If all are omitted the gauge will be drawn using
	GUI BUTTON
	GUI CAPTION
	GUI CHECKBOX
	GUI DELETE
	GUI DISABLE
	GUI DISPLAYBOX
	GUI ENABLE
	GUI FCOLOUR
	GUI FRAME
	GUI FORMATBOX
	GUI FORMATBOX
	CANCEL
	GUI GAUGE
	FColour', 'BColour', 'min', 'max', 'nbrdec' and
	units$' are optional and
	will default to the values used in the previous definition of a GUI GAUGE.
	'c1', 'ta', 'c2', 'tb', 'c3', 'tc' and 'c4' are optional and if not specified the gauge will
	use less colours. If all are omitted the gauge will be drawn using
	GUI HIDE
	GUI INTERRUPT
	GUI LED
	GUI NUMBERBOX
	GUI NUMBERBOX
	CANCEL
	GUI PAGE
	GUI RADIO
	GUI REDRAW
	REDRAW
	GUI SETUP
	GUI SHOW
	GUI SPINBOX
	GUI SWITCH
	GUI TEXTBOX
	GUI TEXTBOX
	CANCEL
	OPTION MAXCTRLS

	Functions (GUI Functions Only)
	Detailed Listing
	CTRLVAL

