
About

The CAN source files (CAN2.c & CAN2.h) and this document (CAN.doc / CAN.pdf) are copyright John Harding (Copyright
2012). These files are intended for use with MMBasic or one of its derivatives (such as DMBasic). Geoff Graham is the
overall author of MMBasic.

The information herein is provided in accordance with License X. Please see “License.txt” which should have been
distributed with the source code. If using a compiled version then the license of the compiled version supersedes the
original source license. (Note, if you alter and or compile the CAN2.c / CAN2.h files you must comply with the licensing
as-is or seek a different licensing agreement from the copyright holder).

The “normal distribution method” is as a compiled HEX file intended for a Duinomite build of MMBasic 4.x or later. The
normal distribution is licensed following Geoff Graham’s license requirements for his MMBasic (in brief: the hex can be
used for any purpose, whereas source code is available for personal use by using the form at:
http://mmbasic.com/source.html)

These commands are designed as a replacement to the original CAN commands that were provided with DMBasic.
These new commands provide finer grained control of the CAN interface (most noticeably the ability to filter channels
and the dynamic management of memory). These new commands also break the “licensing deadlock” created by
incompatible licensing of the two versions of the BASIC interpreter (DMBasic by Olimex and MMBasic by Geoff Graham).
As such they can be included in the official MMBasic distribution by Geoff Graham.

For backward compatibility it is possible to implement the original CAN commands as BASIC subroutines in MMBasic 4.0.
It should also be straightforward to port these commands into DMBasic – however, to exist alongside the original
commands some care will need to be taken to change the memory usage. Also, the latest (at time of writing) version of
DMBasic is 2.7 and does not include support for BASIC subroutines.

These commands are a complete re-write of the CAN interface. Any similarity between these source files and the
originals is because:

(a) Both versions fit into the same MMBasic defined infrastructure.
(b) Both versions use Microchips Peripheral Library (plib).
(c) Both versions are attempting to solve the same problem (provide a high level interface for accessing the

DuinoMite Mega CAN hardware).

However, without the DuinoMite Mega by Olimex and Frank Voorburg’s original CAN commands this implementation
would never have been written. In turn, without Geoff Graham’s MaxiMite the DuinoMite wouldn’t have existed.
Thanks guys!

Peace, love and plug-ins,
John Harding, September 2012.
http://priuschat.com/threads/yapip-recreating-peefs-approach.109724/

http://mmbasic.com/source.html
http://priuschat.com/threads/yapip-recreating-peefs-approach.109724/

CAN Commands Overview

These commands provide access to the CAN hardware available on the DuinoMite Mega. The DuinoMite Mega exposes
one of the two CAN modules on the PIC microprocessor. A CAN module supports up to 32 channels, each channel can
be configured to transmit or receive data. For receiving data the CAN module writes received messages into a different
FIFO buffer for each channel. One entry in a FIFO buffer is 16 bytes long (4 address bytes, 4 length bytes, 8 data bytes).
These commands allow the user to specify the number of records in each FIFO buffer and the internals keep track of the
memory requirements and automatically allocates memory from the available heap. A command is provided to free the
allocated memory when the CAN interface is no longer required.

Note that CAN channels are numbered from 0 to 31 and that, per the Microchip documentation, CAN channels should
be configured contiguously from 0 upwards. I.e. if 5 channels are required use channels 0, 1, 2, 3 & 4; and not 1, 2, 3, 4
& 5 or 3, 5, 10, 22, 31 or any other combination.

The CAN module is first configured by placing it in configuration mode and then issuing configuration commands. When
the desired configuration is set up then the CAN module is enabled. Once enabled the RX and TX commands can be
used to receive and send data on the bus. Once the CAN module is finished it should be disabled and the memory
associated with the FIFO buffers should be freed (for example at the end of the application)

An RX channel can either have a filter for a specific id or be configured to receive all messages. In the latter case the
user can request the id of the received command and then perform processing based on the id of the command.
However, on a CAN bus with moderate to high utilization, more reliable operation will be achieved by setting up
multiple channels with each channel filtering for one id of interest. This is because of the relatively small buffer sizes
and the relatively slow operation of the BASIC interpreter – when trying to receive all messages into one buffer the
buffer overruns and data is lost. Furthermore, when a channel is being filtered for a single ID it may be appropriate to
set the FIFO buffer size to just 1 record, especially if the goal is to update a single value display. This will always give you
the most up-to-date data.

The examples provided were designed for (and tested on) a second generation Toyota Prius (Model years 2004 – 2009).
For a feature-rich application please see: http://priuschat.com/threads/my-duinomite-mega-canview-v4-equivalent-
project.112429/ which provides details of a complete application developed by John Lopez.

Throughout this overview I have referred to “CAN commands” (plural). In fact there is only one true CAN command –
the other commands are “sub-commands” from this one master. By structuring the commands this way we have less
impact on the limitation for the number of top-level/master commands that MMBasic can support.

http://priuschat.com/threads/my-duinomite-mega-canview-v4-equivalent-project.112429/
http://priuschat.com/threads/my-duinomite-mega-canview-v4-equivalent-project.112429/

The commands are as follows:

Informational
CAN
CAN PRINTCONFIG

Setup
CAN CONFIG ok
CAN SETSPEED speed, ok
CAN ADDRXCHNL channel_num, can_id, msg_type, buffer_size, ok
CAN ADDTXCHNL channel_num, buffer_size, ok
CAN ENABLE ok

Read / Write
CAN RX channel_num, can_id, msg_type, length, data(8), ok
CAN RX channel_num, data(8), ok
CAN TX channel_num, can_id, msg_type, length, data(8), ok

Teardown
CAN DISABLE ok
CAN FREE

Note: Examples are provided after the command documentation rather than including snippets for each individual
command. This allows the reader to see all the commands in context.

Note: The description of the RX and TX commands specify the required size of the data array. However, when calling
these functions you will pass in a reference to the first item of the array. Assuming you are using zero-based arrays and
an array called data then when you call the function this will be data(0). See the examples for clarification

Command: CAN
Category: Informational
Arguments: None
Description: Displays a list of the available commands.

Command: CAN PRINTCONFIG
Category: Informational
Arguments: None
Description: Displays details of the current configuration. The details displayed are module status (online or offline),
speed and configured channels.

Command: CAN CONFIG ok
Category: Setup
Arguments:
 ok (output) – 1 if successful, 0 otherwise
Description: Clears any pre-existing configuration and puts the CAN module into configuration mode.

Command: CAN SETSPEED speed, ok
Category: Setup
Arguments:
 speed (input) – baud rate in kbps from 10,000 to 1,000,000
 ok (output) – 1 if successful, 0 otherwise
Description: Sets the baud rate of the CAN connection. Value provided is bits per second with a minimum of 10kbps and
a maximum of 1Mbps.

Command: CAN ADDRXCHNL channel_num, can_id, msg_type, buffer_size, ok
Category: Setup
Arguments:

 channel_num (input) – a CAN channel from 0 to 31
 can_id (input) – a CAN id to filter for (set to 0 to receive all CAN messages)
 msg_type(input) – 0 for standard 11-bit IDs, 1 for extended 29-bit IDs
 buffer_size(input) – size of the FIFO buffer for this channel expressed as number of records
 ok (output) – 1 if successful, 0 otherwise
Description: Configures the specified channel as a receive channel. To filter for an individual id provide the CAN id of
interest, to receive all messages pass in a zero id. If you’re monitoring a single id (with this channel) and want to act on
the latest data set the buffer size to 1. Larger buffer sizes can be set to capture more data – note that no indication is
given when buffer overrun occurs (the oldest data is simply discarded).

Command: CAN ADDTXCHNL channel_num, buffer_size, ok
Category: Setup
Arguments:
 channel_num (input) – a CAN channel from 0 to 31
 buffer_size(input) – size of the FIFO buffer for this channel expressed as number of records
 ok (output) – 1 if successful, 0 otherwise
Description: Configures the specified channel as a transmit channel. Normally a buffer size of 1 is sufficient. However,
larger sizes allow you to separate the construction and buffering of transmissions from the actual transmission.

Command: CAN ENABLE ok
Category: Setup
Arguments:
 ok (output) – 1 if successful, 0 otherwise
Description: Once the configuration is complete call this command to put the CAN module into normal operating mode
and ready to receive or transmit data.

Command: CAN RX channel_num, data(8), ok
Category: Read/Write
Arguments:
 channel_num (input) – a CAN channel from 0 to 31 for a channel previously configured for RX
 data(8) (output) – an array to receive the data from the FIFO record
 ok (output) – 1 if successful, 0 if no data available or other failure occurs
Description: This command is intended to read the data only from a channel that has been previously configured to
monitor for a given ID (hence the id is already known and doesn’t need to be retrieved from the buffer).

Command: CAN RX channel_num, can_id, msg_type, length, data(), ok
Category: Read/Write
Arguments:
 channel_num (input) – a CAN channel from 0 to 31 for a channel previously configured for RX
 can_id (output) – the CAN id of the message read from the FIFO buffer
 msg_type (output) – the message type of the message read from the FIFO buffer
 length (output) – the amount of data read (between 0 and 8 bytes)

data(8) (output) – an array to receive the data from the FIFO record
 ok (output) – 1 if successful, 0 if no data available or other failure occurs
Description: This command is intended to read information from the FIFO buffer of a channel that has been previously
configured to receive all messages – hence the need to provide variables to retrieve the full information about the
message.

Command: CAN TX channel_num, can_id, msg_type, length, data(), ok
Category: Read/Write
Arguments:
 channel_num (input) – a CAN channel from 0 to 31 for a channel previously configured for RX
 can_id (input) – the CAN id to send
 msg_type (input) – the message type being sent (0=SID, 1=EID)
 length (input) – the amount of data being sent (between 0 and 8 bytes)

data(8) (input) – an array of data bytes to send (values between 0 and 255)
 ok (output) – 1 if successful, 0 otherwise
Description: Places data into the FIFO buffer for this channel. Data will be sent on the bus when the CAN module
detects the bus is available (i.e. not busy).

Command: CAN DISABLE ok
Category: Teardown
Arguments:
 ok (output) – 1 if successful, 0 otherwise
Description: Puts the module into offline mode, but does not destroy the configuration. This can be used to stop all
processing of CAN messages while another processor intensive task takes place. CAN ENABLE can then be called to re-
enable the pre-existing configuration.

Command: CAN FREE
Category: Teardown
Arguments: none
Description: Takes the module off line and frees all memory associated with the existing configuration.

EXAMPLE ONE – Minimal example of reading one channel
' (c) John Harding, 2012 - see license.txt for
' licensing details

' Example designed for Gen 2 Prius

' Configures connection speed to 500kbps and
' monitors for CAN id 52Ch when data is received
' we calculate the ECT from the appropriate data
' bytes.

' Note that the period of this message is
' approximately 1Hz

Cls
Dim ok
Dim data(8)
Dim ect

CAN CONFIG ok
CAN SETSPEED 500000, ok
CAN ADDRXCHNL 0,&h52C,0,1,ok
CAN ENABLE ok

Timer = 0
Do
 If (Inkey$ = "q") Then Exit
 CAN RX 0,data(0),ok
 If (ok=1) Then
 Print Timer ": ECT = " (data(1)/2)
 EndIf
Loop

CAN FREE

End

EXAMPLE TWO – Example of reading all channels and displaying just one (but don’t do this!)
' (c) John Harding, 2012 - see license.txt for
' licensing details

' Example designed for Gen 2 Prius

' Configures connection speed to 500kbps and
' configures a channel to receive all messages
' into a FIFO buffer with 32 records.
'
' When a message with id 52Ch is received
' we calculate the ECT from the appropriate data
' bytes.

' Note that the period of this message is
' approximately 1Hz but that we receive many
' wrong ids before we get the message we want

' This example is provided to contrast with
' example 1. It is suggested to use example 1
' as the basis for your code.

Dim ok
Dim data(8)
Dim id
Dim typ
Dim length

CAN CONFIG ok
CAN SETSPEED 500000, ok
CAN ADDRXCHNL 0, 0, 0, 32, ok
CAN ENABLE ok
Timer=0
Do
 q$ = Inkey$
 If (q$="q") Then Exit
 CAN RX 0, id, typ, length, data(0), ok
 If (ok=1) Then
 If (id=&H52C) Then
 Print " "
 Print Timer ": " Hex$(id) " : " length " : ECT= " data(1) / 2 " C"
 Else
 Print Timer ": " Hex$(id) " ";
 Endif
 EndIf
Loop
CAN FREE
End

EXAMPLE THREE – Reading manufacturer specific PID’s on a Toyota Prius 2005.

' Example to query PIDs for the battery ECU
' and convert the received data into engineering values
' JDH 10/8/12

Dim ok
Dim txID : Dim txData(8) : Dim txLen
Dim rxID : Dim rxData(8)

txData(0) = 0 : txData(1) = 0 : txData(2) = 0 : txData(3) = 0
txData(4) = 0 : txData(5) = 0 : txData(6) = 0 : txData(7) = 0
txLen = 8 ' always transmit 8 bytes even though payload may be less

txID = &H7E3 ' Battery ECU module
rxID = txID + 8 ' id of reply is 8 higher than module number

' Check the "ok" result, if it fails print a message and exit
Sub checkOK(okay, failed$, succeeded$, xit)
 If (okay=0) Then
 Print failed$
 If (xit=1) Then Exit
 Else
 Print succeeded$
 EndIf
End Sub

' print formatted hex numbers
Function toHex$(val)
 toHex$=""
 If (val<16) Then toHex$="0"
 toHex$ = toHex$ + Hex$(val)
End Function

' print timer : id : len : data
Sub PrintRawData
 Print Timer ": " Hex$(rxId) " : " rxLen " : " toHex$(rxData(0)) " ";
 Print toHex$(rxData(1)) " " toHex$(rxData(2)) " " toHex$(rxData(3)) " ";
 Print toHex$(rxData(4)) " " toHex$(rxData(5)) " " toHex$(rxData(6)) " ";
 Print toHex$(rxData(7))
End Sub

' make the PID request
Sub SendModeAndPID(mode, pid)
 Local txOK
 txData(0) = 3
 txData(1) = mode
 txData(2) = pid
 CAN TX 0,txID,0,txLen,txData(0),txOk
 checkOK(txOK, "FAILED TO SEND PID", "SENT PID " + Hex$(pid) + " TO " + Hex$(txId), 0)
End Sub

' Send the acknowledgement after receiving frame
Sub SendReadyForMore()
 Local txOK
 txData(0) = &H30
 txData(1) = 0
 txData(2) = 0
 CAN TX 0,txID,0,txLen,txData(0),txOk
 checkOK(txOK, "FAILED TO SEND PID", "SENT 0x30 TO " + Hex$(txId), 0)
End Sub

' Chains together the initial PID request and the acknowledgement
Sub RequestPID(mode, pid)
 ' Note, we're "cheating" here and simply waiting 10msec and sending the
 ' acknowlegement. Strictly speaking we should wait for the response
 ' header first (frame 0x10). This works because in the CAN setup (below)
 ' we've setup a big enough buffer to receive all the frames from the
 ' longest PID.
 SendModeAndPID(mode, pid)
 Pause 10
 SendReadyForMore
End Sub

Sub DisplayD0
 ' retrieve the data (see DisplayCE for commentary)
 RequestPID &H21,&HD0
 Do
 CAN RX 1, rxData(0), ok
 Loop Until (ok=1)
 PrintRawData
 Local b(rxData(1)+15)
 Local j
 Local i
 j=0
 For i=4 To 7
 b(j)=rxData(i)
 j=j+1
 Next i
 Do
 CAN RX 1, rxData(0), ok
 If (ok=1) Then
 PrintRawData
 For i=1 To 7
 b(j)=rxData(i)
 j=j+1
 Next i
 EndIf
 Loop Until (ok=0)

 ' Convert to engineering units (see DisplayCE for commentary)
 Print "Block Count = " b(0)
 Print "Time in LOW = " (256*b(1)+b(2))
 Print "Time in DC Inhibit = " (256*(b3)+b(4))
 Print "Time in HIGH = " (256*(b5)+b(6))
 Print "Time in HOT = " (256*(b7)+b(8))
 Print "Lowest Block = " b(9)
 Print "Lowest Voltage = " (2.56*b(10)+0.1*b(11)-327.68)
 Print "Highest Block = " b(12)
 Print "Highest Voltage = " (2.56*b(13)+0.1*b(14)-327.68)
 For i=15 To 28
 Print "Block " toHex$(i-14) " Resistance = " (0.001*b(i)) " Ohms"
 Next i
End Sub

Sub DisplayCF
 ' retrieve the data (see DisplayCE for commentary)
 RequestPID &H21,&HCF
 Do
 CAN RX 1, rxData(0), ok
 Loop Until (ok=1)
 PrintRawData
 Local b(rxData(1)+15)
 Local j

 Local i
 j=0
 For i=4 To 7
 b(j)=rxData(i)
 j=j+1
 Next i
 Do
 CAN RX 1, rxData(0), ok
 If (ok=1) Then
 PrintRawData
 For i=1 To 7
 b(j)=rxData(i)
 j=j+1
 Next i
 EndIf
 Loop Until (ok=0)

 ' Convert to engineering units (see DisplayCE for commentary)
 Print "Air Intake Temp = " (4.608*b(0)+0.018*b(1)-557.824) " F"
 Print "Fan Motor Voltage = " (0.2*b(2) - 25.6) " V"
 Print "Aux Batt Voltage = " (0.2*b(3) - 25.6) " V"
 Print "Battery Charge = " (b(4) - 64)
 Print "Battery Discharge = " (b(5) - 64)
 Print "Delta SOC = " (0.01 * b(6)) " %"
 Print "Fan Speed = " b(8)
 Print "Batt Temp 1 = " (4.608*b(10)+0.018*b(11)-557.824) " F"
 Print "Batt Temp 2 = " (4.608*b(12)+0.018*b(13)-557.824) " F"
 Print "Batt Temp 3 = " (4.608*b(14)+0.018*b(15)-557.824) " F"
End Sub

Sub DisplayCE
 ' send the request
 RequestPID &H21,&HCE

 ' retrieve the first frame
 Do
 CAN RX 1, rxData(0), ok
 Loop Until (ok=1)
 PrintRawData
 ' create an array big enough to hold all the data
 ' the +15 is because there always seems to be 1 more frame than expected
 ' and if the amount of data is 1 larger than a multiple of 8 we need 7
 ' bytes for the remainder of that frame + 8 bytes for the "extra" frame
 Local buffer(rxData(1)+15)

 ' Copy the data from the first frame into the buffer
 Local i
 Local j
 j=0
 For i=4 To 7
 buffer(j)=rxData(i)
 j=j+1
 Next i

 ' now process the remaining frames
 Do
 CAN RX 1, rxData(0), ok
 If (ok=1) Then
 PrintRawData
 For i=1 To 7
 buffer(j)=rxData(i)
 j=j+1
 Next i

 EndIf
 Loop Until (ok=0)

 ' We have the raw data, now convert it to engineering values
 ' These calculations are from USBSeaWolf's spreadsheet available on the
 ' PriusChat.com forum.
 Print "SOC = " (0.5 * buffer(0)) " %"
 Print "Current = " (2.56*buffer(1)+0.1*buffer(2)-327.68) " A"
 j=3
 For i=1 To 14
 Print "Block " toHex$(i) " = " (2.56*buffer(j)+0.1*buffer(j+1)-327.68) " V"
 j=j+2
 Next i
End Sub

''''''''''''''''''''''''''
' START HERE...

Cls

CAN CONFIG ok : checkOK(ok, "CAN CONFIG FAILED", "", 1)
CAN SETSPEED 500000, ok : checkOK(ok, "CAN SETSPEED FAILED", "", 1)
CAN ADDTXCHNL 0,1,ok : checkOK(ok, "CAN ADDTXCHNL FAILED", "", 1)
CAN ADDRXCHNL 1,rxId,0,10,ok : checkOK(ok, "CAN ADDRXCHNL FAILED", "", 1)
CAN ENABLE ok : checkOK(ok, "CAN ENABLE FAILED", "", 1)
CAN PRINTCONFIG

' Note the above configuration for channel 1
' (a) we're filtering on the response ID (which is the moduleID + 8)
' (b) we create a 10 record buffer this allows us to capture all the response
' frames in one go

Print "q:quit, t:0xCE, u:0xCF, v:0xD0 send pid to " Hex$(txID)

Timer = 0
Do
 k$ = Inkey$
 If (k$ = "q") Then Exit
 If (k$ = "t") Then DisplayCE
 If (k$ = "u") Then DisplayCF
 If (k$ = "v") Then DisplayD0
 CAN RX 1, rxData(0), ok
 If (ok=1) Then PrintRawData
Loop

CAN FREE

